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Because an electric current involves moving charge, it feels a force when

a magnetic field is applied to it. Currents also produce magnetic fields, but
that’s a topic for a future post. Here we’re concerned with calculating the
effect on a current of a magnetic field.

The essence of the argument is to apply the Lorentz force law to a col-
lection of moving charges. In its most general form, if we have a charge
distribution ρ(r) with a velocity field v(r) immersed in a magnetic field
B(r) then the total force on the charge due to the magnetic field is

F =
∫

v×Bρd3r (1)

In this general case, all factors in the integrand depend on position. This
formula is often written as

F =
∫

J×Bd3r (2)

where J ≡ ρv is the volume current density, and represents the charge per
unit area per unit time flowing past a given point.

We can make various simplifying assumptions to get some common spe-
cial cases. A surface current is a current that flows over the surface of some
volume, so the analogous formula is

F =
∫

v×Bσda (3)

=
∫

K×Bda (4)

In this case, σ is the surface charge density and K ≡ σv is the charge per
unit width per unit time flowing past a given point on the surface.

Finally, for a linear current (such as that in an infinitesimally thin wire),
we get
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F =
∫

v×Bλdl (5)

=
∫

I×Bdl (6)

Here, λ is the linear charge density and I ≡ λv is simply the charge per
unit time flowing past a point in the wire, and is the current commonly
used in describing electric circuits. Technically, I is a vector, since it has a
direction, but in most circuit calculations, the directional aspect of current
is ignored, since it’s constrained to flow wherever the circuit takes it.

As an example of calculating the magnetic force on a linear current, sup-
pose we have a square loop of wire of side length a lying in the yz plane
with its centre at the origin. It carries a constant current I , flowing counter-
clockwise when viewed down the x axis (that is, looking towards negative
x). In practice, such a current-carrying loop is impossible (unless it’s su-
perconducting), since the resistance in the wire would stop the current after
some time. You might want to think of the setup as a loop connected to a
battery which provides the constant current.

If we apply a constant magnetic field B = Bx̂, then the net force on the
loop is zero. This follows since the force on the edge y = a

2 is

Fy=a/2 = a(I ẑ)× (Bx̂) (7)
= aIBŷ (8)

That is, the right-hand side of the square experiences a force pointing to the
right, since the current flows upwards and the magnetic field is pointing to-
wards you (assuming you’re standing on the positive x axis looking towards
the origin). By a similar calculation, the force on the left-hand side of the
square is −aIBŷ, since the current has reversed direction and the magnetic
field is the same. Similarly, the top and bottom edges cancel out, giving a
net force of zero.

Suppose we now impose a varying magnetic field of the form

B = kzx̂ (9)

where k is a constant. Notice that the field reverses direction as we cross
the xy plane. To find the force, we can start with the top and bottom edges
z = ±a

2 , since the field is constant along each of these edges. On the top
edge z = a

2 , B = ka
2 x̂ and I =−I ŷ so
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Fz=a/2 = a

(
−I ŷ× ka

2
x̂
)

(10)

=
ka2I

2
ẑ (11)

On the bottom edge, z =−a
2 , B =−ka

2 x̂ and I = I ŷ so

Fz=−a/2 =
ka2I

2
ẑ (12)

On the left and right sides, the forces cancel, since for each value of z
there is a segment of the loop with current +I ẑ on the right and a corre-
sponding segment with current −I ẑ on the left. The magnetic field is the
same for these two segments so the net force is zero.

The total force is then

F = Fz=a/2 +Fz=−a/2 (13)

= ka2I ẑ (14)
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