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The potentials for an oscillating dipole at a large distance from the dipole
are

V(r,@,t):—%sin (w <t—£>> (1)
A(r0,t) = —Mziiwisin (w (t—£>> )

These formulas apply in the special case where the dipole axis is the z
axis, so that the dipole moment is

p = pocos (wt) Z 3)

We can rewrite these formulas for a dipole pointing in any direction by
noting that

pocost =pg -t 4)
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V(r,0,t) = —4;;% (po - ) sin <w (t . g)) (5)
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The fields can be calculated from the potentials using straightforward
differentiation. Griffiths shows the details in his section 11.1.2. After as-
suming that 7 > = (equivalent to assuming that the observation point is

much greater than the wavelength of the radiation) we get from|I{and
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Note that E and B are perpendicular and in phase, and that £/ B = ¢ just
as with plane waves in vacuum. We can write these equations for general
dipole directions by noting that

2x f=sinl¢ (11)
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The energy radiated per unit area per unit time is given by the Poynting
vector:
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For a general dipole direction, this is
po [w? [po x & T
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The intensity is the average of S over a single time cycle (that is, over a
time 27 /w). The average of cos” x over a single cycle is %, SO
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or in direction-independent form
<S> = @ {‘ﬁM} zf- (20)
2¢ |4 71

There is no radiation along the dipole’s axis, and the maximum radiation
occurs perpendicular to the axis.

The average total power radiated is the surface integral of (S) over a
sphere of radius 7, so we get from[I9]

2 g2
(P) = ?{Z—p‘)sm } r2sin6f - da 1)
C T T
4,2 T 2T
_ ’gjrfco /0 /0 sin3 fddo (22)
4,2
pow*pg
_ KoY Po 23
127mc 23)

The result is independent of distance r from the dipole, so we see that
this power remains constant out to infinity.
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