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There is an interesting theorem that relates two separate charge distri-

butions. Suppose we have a charge distribution ρ1 with its associated po-
tential V1, and a completely separate charge distribution ρ2 with potential
V2. These two distributions do not co-exist; they are completely separate
situations.

Now consider the electric fields E1 and E2 produced by these two distri-
butions. We can consider the following integral, taken over all space:

∫
E1 ·E2d

3r = −
∫

∇V1 ·E2d
3r (1)

Let’s consider the first term in the dot product, and use integration by
parts:

−
∫
∂V1

∂x
E2xdxdydz =−

∫
V1E2x |all x dydz+

∫
V1
∂E2x
∂x

dxdydz (2)

If we make the usual assumption that the potential V1 vanishes at infinity
then the integrated term (the first term on the RHS) is zero. Doing similar
integrals for the other terms in the dot product (integrating with respect to y
and then z first for the second and third terms respectively) gives us:

−
∫

∇V1 ·E2d
3r =

∫
V1∇ ·E2d

3r (3)

=
1
ε0

∫
V1ρ2d

3r (4)

where in the last line we used Gauss’s law ∇ ·EEE = ρ/ε0 relating the field to
the charge distribution.

We could just as well have done the same calculation interchanging the
subscripts 1 and 2, so we get∫

V1ρ2d
3r =

∫
V2ρ1d

3r (5)

which is Green’s reciprocity theorem.
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The result 5 is valid for any two charge distributions, provided that they
are not present at the same time. If the distributions are located on conduc-
tors, then the potential on each conductor is a constant, so we can take Vi
outside the integral, and we get

V1

∫
ρ2d

3r = V2

∫
ρ1d

3r (6)

V1Q2 = V2Q1 (7)

For an isolated conductor, the charge, potential and capacitance are re-
lated by

Q= CV (8)

If we have two conductors and place a chargeQ1 on conductor 1 but no extra
charge on conductor 2, then the potential of conductor 1 is proportional to
Q1:

V1 = p11Q1 (9)

The potential of conductor 2 is due to charge redistributing itself in response
to the field produced by conductor 1. The actual potential V2 is proportional
to Q1 but is determined by the shape of conductor 2 and its distance from
conductor 1. We write this as

V2 = p21Q1 (10)

where p21 incorporates the effects of conductor 2’s shape and distance from
conductor 1.

If the situation is reversed, so that we now place charge Q2 on conductor
2, but nothing on conductor 1, then

V1 = p12Q2 (11)
V2 = p22Q2 (12)

If we now place charge on both conductors, then by the principle of su-
perposition, we can get the potentials by adding the above two situations:

V1 = p11Q1 +p12Q2 (13)
V2 = p21Q1 +p22Q2 (14)

Now suppose we take Q1 =Q and Q2 = 0. Then

http://physicspages.com/pdf/Electrodynamics/Capacitance.pdf
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V1 = p11Q

V2 = p21Q
(15)

If we reverse the setup, so that Q2 =Q and Q1 = 0, then we get

V1 = p12Q

V2 = p22Q
(16)

We can use these two setups as the two participants in the reciprocity the-
orem for conductors in 7. The charge involved in both participants is the
same (Q). We’ll rewrite 5 with relabelled indices to avoid confusion. We’ll
call the two configurations a and b so we have

∫
Vaρbd

3r =
∫
Vbρad

3r (17)

The potential Va on the LHS consists of the potentials on the two conduc-
tors, V1 and V2. In each conductor, the corresponding potential is a constant,
so we can write the LHS as

∫
Vaρbd

3r = Va1

∫
ρb1d

3rrr+Va2

∫
ρb2d

3rrr (18)

Here, ρb1 is the charge density of conductor 1 in configuration b, and like-
wise for ρb2 . The integrals over ρ just give the total charge on each conduc-
tor in configuration b. In configuration b from 16, so we have Q1 = 0 and
Q2 =Q. The potentials Va1 and Va2 are the potentials from configuration a,
given by 15. Thus

∫
ρb1d

3rrr = 0∫
ρb2d

3rrr =Q
(19)

so we have

∫
Vaρbd

3r = Va1×0+Va2Q (20)

= p21Q
2 (21)

To get the RHS of 17 we use configuration 16 for Vb and
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∫
ρa1d

3rrr =Q∫
ρa2d

3rrr = 0
(22)

which gives

Vbρad
3r = Vb1Q+0 (23)

= p12Q
2 (24)

Equating 21 and 24 we see that

p21 = p12 (25)

In fact, we can generalize all this to a case where we have n conductors.
In that case, we have

Vi =
n

∑
j=1

pijQj (26)

and it turns out that the matrix [pij ] is symmetric, as we’ve shown with the
special 2× 2 case here. The potential coefficients pij depend only on the
geometry of the setup (shapes and spacings of the conductors) and not on
the amounts of charge on the conductors.

Example 1. We have two parallel infinite conducting planes, both of which
are grounded. The distance between the plates is d. We place a point charge
q between the plates at a distance r from plate 1 (which we take to be the
left plate). Find the total charge induced on each plate.

To apply the reciprocity theorem, we need two distinct charge distribu-
tions. For the first, we can take the system as described. For the second, we
can remove the charge q and also remove the condition that the plates are
grounded, so each plate can be at a different potential.

First, consider the distribution as given. Let the potential of the left plate
be Vl and of the right plate be Vr. Since the two plates are grounded, we
have Vl = Vr = 0. Also, since the plates are grounded, the induced charge
must cancel out the point charge so there is zero net charge in the system.
That is Ql+Qr =−q.

Now consider the distribution without the point charge q. In this case we
can take the potential of the left plate to be V ′l = 0 and of the right plate
to be V ′r = V0. Note that this assumes the right plate is not grounded. This
doesn’t matter, since the second distribution can be anything we like. We
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assume that the plates here have total chargesQ′l andQ′r, although we’ll see
we don’t need these values anyway.

Since the second distribution contains no point charge, the potential varies
linearly between the two plates, so the potential at position r is V ′r = V ′l +
V0r/d = V0r/d. Now we’re ready to apply the reciprocity theorem. The
charge density ρ2 consists only of the charge on the two plates, since we’ve
removed q. We have, on one side (subscript 1 refers to the configuration
with the point charge q; subscript 2 to the configuration without q):

∫
V1ρ2d

3r = VlQ
′
l+VrQ

′
r (27)

= 0 (28)

since Vl = Vr = 0.
On the other side, we have, with the point charge given by

qδ (x− r) (29)

∫
V2ρ1d

3r = V ′l Ql+V
′
rq+V

′
rQr (30)

= V0

(qr
d
+Qr

)
(31)

From the theorem, this must be zero, so we get

Qr =−
qr

d
(32)

Ql =−q+
qr

d
(33)

=−q
(

1− r
d

)
(34)

Note that the reciprocity theorem in this case allows us to calculate only
the total charge on each plate; finding the actual surface charge density is a
considerably harder problem.

Example 2. We have two concentric spherical conductors of radii a and
b > a, and a point charge q between them at a location r such that a < r < b.
Again assuming the spheres are grounded, find the total induced charge on
each sphere.

Using similar notation to the last example, we again consider the two
distributions to be the original configuration (with the charge q) and a con-
figuration without q. In the first case, since the conductors are grounded,
we have



GREEN’S RECIPROCITY THEOREM 6

Va = Vb = 0 (35)
In the second case, we can take V ′a = V0. In this case, since we don’t have

the charge q, the system has spherical symmetry, so any charge distributed
over the spheres must be uniform, so the potential and the field are the same
as if the charge were concentrated at the centre of the spheres. This means
that the potential between the spheres has a 1/r dependence, so we can
write

V ′a = V0 (36)

V ′r =
a

r
V0 (37)

V ′b =
a

b
V0 (38)

Applying the reciprocity theorem, we get∫
V1ρ2d

3r = VaQ
′
a+VbQ

′
b (39)

= 0 (40)

On the other side, we have∫
V2ρ1d

3r = V ′aQa+V
′
rq+V

′
bQb (41)

= V0

(
Qa+

a

r
q+

a

b
Qb

)
(42)

Again, since the two spheres are grounded in the first configuration, we
must have Qa+Qb =−q, so we get∫

V2ρ1d
3r = V0

(
−q−Qb+

a

r
q+

a

b
Qb

)
(43)

= 0 (44)

Solving this for Qb we get

Qb =−q
(r−a)b
(b−a)r

(45)

Qa =−q−Qb (46)

=−q (b− r)a
(b−a)r

(47)


