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As another example of applying the solution to Laplace’s equation in

cylindrical coordinates, we consider the following problem. We are given a
cylindrical non-conducting shell or radius R carrying a charge density of

σ(φ) = k sin5φ (1)
We wish to find the potential outside and inside the cylinder.
We start with the general solution:
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(2)
Since we are given the surface charge, we can use a similar procedure

to that used in solving problems in spherical coordinates. We can start by
finding the general form of the potential in the two regions. Outside the
shell, to keep V finite, we eliminate the lnr and rn terms. (In fairness,
it has to be pointed out that the potential of an infinite charged wire does
go as lnr so in that case it seems acceptable for V to be infinite at large
distances. Because the solution to Laplace’s equation with a given set of
boundary conditions is unique, though, the fact that we can find a solution
in this problem in which V remains finite at all locations must mean that it
is the actual solution.)

Thus, outside the shell, we have
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rn
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]
(3)

Inside the shell, we eliminate the terms in lnr and 1/rn to prevent an
infinity at r = 0. We have

Vin =Bin +
∞

∑
n=1

[Anr
n sinnφ+Bnr

n cosnφ] (4)

Since the potential is continuous over a surface charge, we must have
Vout(R) = Vin(R), so we get
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Equating coefficients of the sine and cosine, we get

Bout =Bin (6)

Cn =−AnR
2n (7)

Dn =BnR
2n (8)

The outward derivative of the potential is discontinuous across a surface
charge, and we have
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Plugging in the formulas for Vout and Vin, we get
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∑
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(10)
Equating coefficients of sine and cosine, we see that the only non-zero

term on the left must be the sin5φ term, so we have

10A5R
4 =

k

ε0
(11)

A5 =
k

10ε0R4 (12)

C5 =−
k

10ε0
R6 (13)

An = Cn = 0 (n 6= 5) (14)

Bn =Dn = 0 (all n) (15)

We are left with the constants Bout = Bin and might as well take them to
be zero, since an arbitrary constant doesn’t affect the potential. We therefore
get
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Vout(r,φ) =
kR6

10ε0r5 sin5φ (16)

Vin(r,φ) =
kr5

10ε0R4 sin5φ (17)
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