CREATION AND DESTRUCTION OPERATORS FOR A FREE SCALAR FIELD

Link to: physicspages home page.

To leave a comment or report an error, please use the auxiliary blog and include the title or URL of this post in your comment.

Post date: 20 August 2023.

The scalar, free-field Hamiltonian derived earlier is

$$H = \sum_{\mathbf{k}} \omega_{\mathbf{k}} \left[N_a(\mathbf{k}) + \frac{1}{2} + N_b(\mathbf{k}) + \frac{1}{2} \right]$$
(1)

where the operators are

$$N_a(\mathbf{k}) = a^{\dagger}(\mathbf{k}) a(\mathbf{k})$$
⁽²⁾

$$N_b(\mathbf{k}) = b^{\dagger}(\mathbf{k}) b(\mathbf{k})$$
(3)

These operators can be interpreted as number operators. That is, when they operate on a state $|n_{\mathbf{k}}\rangle$ containing $n_{\mathbf{k}}$ particles with energy $\omega_{\mathbf{k}}$, their eigenvalues are just $n_{\mathbf{k}}$:

$$N_a\left(\mathbf{k}\right)\left|n_{\mathbf{k}}\right\rangle = n_{\mathbf{k}}\left|n_{\mathbf{k}}\right\rangle \tag{4}$$

With this interpretation, and the commutation relations for the *a* and *b* operators, we can derive the fact that $a^{\dagger}(\mathbf{k})$ is a *creation operator* for type *a* particles with energy $\omega_{\mathbf{k}}$, $a(\mathbf{k})$ is a *destruction operator* for the same type of particle, and $b^{\dagger}(\mathbf{k})$ and $b(\mathbf{k})$ are the analogous operators for type *b* particles (antiparticles).

Suppose we operate on the state $|n_{\mathbf{k}}\rangle$ with $a^{\dagger}(\mathbf{k})$. To see that this creates a particle with energy $\omega_{\mathbf{k}}$, we operate on the resulting state with $N_a(\mathbf{k})$:

$$N_{a}(\mathbf{k}) a^{\dagger}(\mathbf{k}) |n_{\mathbf{k}}\rangle = a^{\dagger}(\mathbf{k}) a(\mathbf{k}) a^{\dagger}(\mathbf{k}) |n_{\mathbf{k}}\rangle$$
(5)

$$=a^{\dagger}\left(\mathbf{k}\right)\left[1+a^{\dagger}\left(\mathbf{k}\right)a\left(\mathbf{k}\right)\right]\left|n_{\mathbf{k}}\right\rangle \tag{6}$$

$$=a^{\dagger}\left(\mathbf{k}\right)\left[1+N_{a}\left(\mathbf{k}\right)\right]\left|n_{\mathbf{k}}\right\rangle \tag{7}$$

$$=a^{\dagger}\left(\mathbf{k}\right)\left[1+n_{\mathbf{k}}\right]\left|n_{\mathbf{k}}\right\rangle \tag{8}$$

$$= \left[1 + n_{\mathbf{k}}\right] a^{\dagger} \left(\mathbf{k}\right) \left|n_{\mathbf{k}}\right\rangle \tag{9}$$

Thus the state $a^{\dagger}(\mathbf{k}) | n_{\mathbf{k}} \rangle$ is an eigenstate of $N_a(\mathbf{k})$ with eigenvalue $1 + n_{\mathbf{k}}$ so the operator $a^{\dagger}(\mathbf{k})$ has created an extra $\omega_{\mathbf{k}}$ particle.

The procedure for $a(\mathbf{k})$ is similar:

$$N_{a}(\mathbf{k}) a(\mathbf{k}) |n_{\mathbf{k}}\rangle = a^{\dagger}(\mathbf{k}) a(\mathbf{k}) a(\mathbf{k}) |n_{\mathbf{k}}\rangle$$
(10)

$$= \left[a\left(\mathbf{k}\right) a^{\dagger}\left(\mathbf{k}\right) - 1 \right] a\left(\mathbf{k}\right) \left| n_{\mathbf{k}} \right\rangle$$

$$(11)$$

2

$$= [a(\mathbf{k}) N_a(\mathbf{k}) - a(\mathbf{k})] |n_{\mathbf{k}}\rangle$$
(12)

$$= a\left(\mathbf{k}\right)\left[n_{\mathbf{k}} - 1\right]\left|n_{\mathbf{k}}\right\rangle \tag{13}$$

$$= [n_{\mathbf{k}} - 1] a(\mathbf{k}) |n_{\mathbf{k}}\rangle \tag{14}$$

Thus the state $a(\mathbf{k}) |n_{\mathbf{k}}\rangle$ is an eigenstate of $N_a(\mathbf{k})$ with eigenvalue $n_{\mathbf{k}} - 1$ so the operator $a(\mathbf{k})$ has destroyed a $\omega_{\mathbf{k}}$ particle.

We can represent a state containing $n_{\mathbf{k}} b$ type particles (antiparticles) by $|\bar{n}_{\mathbf{k}}\rangle$ (a bar over a symbol means it refers to antiparticles). Then

$$N_{b}\left(\mathbf{k}\right)\left|\bar{n}_{\mathbf{k}}\right\rangle = \bar{n}_{\mathbf{k}}\left|\bar{n}_{\mathbf{k}}\right\rangle \tag{15}$$

The two derivations above are exactly the same for antiparticles, if we replace all a operators by b operators, N_a by N_b and n_k by \bar{n}_k . Thus $b^{\dagger}(\mathbf{k})$ creates a single antiparticle with energy $\omega_{\mathbf{k}}$ and $b(\mathbf{k})$ destroys one antiparticle with that energy.

PINGBACKS

Pingback: Creation and annihilation operators - normalization Pingback: Anticommutators, creation and annihilation operators in the Dirac equation