SECOND QUANTIZING A SINGLE-PARTICLE OPERATOR

Link to: physicspages home page.

To leave a comment or report an error, please use the auxiliary blog and
include the title or URL of this post in your comment.

Post date: 25 Jul 2023.

Second quantization is the expression of quantum mechanical states us-
ing particles rather than waves. We use (creation and annihilation operators
acting on particle states to make transitions between states. If we have a
single-particle operator A we can expand it using two unit operators as fol-
lows:
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Each of the sets |«) and |3) are complete, orthonormal sets of states
for a single particle. For multi-particle systems, we use the creation and
annihilation operators ang and ap to add or subtract particles from a state, so
we’d like to know how to define a multi-particle version A of the single-
particle operator A.

The route to this end is a bit complex, so bear with me. Suppose we
have a system of NV particles. To satisfy the symmetry rules for bosons and
fermions, we can write a state of these NV particles as
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This notation requires a bit of explanation. First, we’re assuming that
each of the N particles is in a different state and that these states are or-
thonormal. Only in this case is the normalization factor \/% (For example,
. . N
if we put 2 bosons into the same state |¢), the wave function is 5 1) [¢1),
not % |t)1) |1).) The P refers to a permutation of the integers 1, ..., N, and

P (i) is the ith integer in the permutation P. The product term [T, W P(i)>
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is a product of N single-particle states in a certain order, where the order
of the state in the product determines its spatial coordinate. For example, if
N = 3 then one permutation is P = 3, 1,2 so for that permutation
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The factor £ is +1 for bosons and —1 for fermions, and the sum over P
sums over all N! possible permutations of the integers 1,..., NV, so the state
|91, ..,1N) consists of N! terms, each of which contains a product of N
different single particle states. [The fact that the states are all different isn’t
mentioned in Lancaster & Blundell’s book, but it seems to me that this is a
necessary condition. ]

For the purposes of using P as an exponent in £, P can be regarded as
the number of swaps of integers in the original sequence 1,..., N that are
required to get the permutation P. Thus, to get 3,1,2 from 1,2,3 we swap 1
with 2, then 2 with 3, so there are 2 swaps. Permutations requiring an even
(odd) number of swaps are called even (odd) permutations. For bosons, & P
is always 1, while for fermions, 5P is +1 if P is even and —1 if P is odd.

Now suppose we have a different N-particle state given by
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Here () also represents a permutation. I’ve used a different symbol so that
we can treat P and () as two different permutations.

The single-particle states |x;) also form a complete orthonormal set, but
they could be a different such set from the |¢);). If we take the inner product
of these two N-particle states we get the rather horrible expression

1 N
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We need only one product since we are summing over both permutations P
and (), so we get all possible inner products between terms from [ and [6]
For example, if N = 2, then for fermions

1
V2

X1x2) = % (b (x1)) [x2 (x2)) = [x1 (x2)) Ix2 (1)) ©)

[V1tha) = —= ([¥h1 (x1)) [¥02 (%2)) — |91 (x2)) [¢2 (x1))) ®)

On the RHS, we can form inner products only between single-particle
states that use the same spatial coordinate and, since (x; (X1)|¥; (X1)) =
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(xi (X2) [¢j (x2)) (since we’re integrating over all space on both sides, the
integration coordinate doesn’t matter) we get

(xix2|v1n) = % 20 lvn) (xal2) —2(x1 [¥2) (x2 [¥1)] (10)

= (x1[¥1) (xa [¥2) = (xa v2) (xa [¥1) (11)

For any given permutation of the 1); or x;, the position coordinates can
be distributed among the NV single-particle states in N! ways. If we choose
a permutation () for |xi,...,xn) and P for |[¢,...,9y), then the product
Hi]\; | <XQ(¢) |z/1 P(i) > occurs V! times because of the V! ways of assigning
positions. For example, for N = 2, we can choose () = 1,2 and P = 1,2 so
that

2
TTxom [vpe ) = (alen) (xa i) (12)
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This combination can occur with x| and 1 functions of x; and x» and v,
functions of x; or 1 and /; functions of x, and » and ¢, functions of x;.
In general, for any pairing of x; states with ¢); states, there are N! ways of
distributing the position coordinates, each of which gives the same product
of single-particle inner products. We can rewrite this by always ordering
the ; states in their original order 1,..., N and pairing this ordering with
each permutation P of v); states. That is

1 N
* P i=1

N
=Z€PH<Xi [vpe)) (14)
P =l

For fermions (with £ = —1) this is actually the definition of the determi-
nant of a matrix (we’ll accept this mathematical result):

xrlvr)  (xalvz) o (xalvw)

<X17---aXN‘wla-“?wN)fermjons: <X2|wl> <X2|w2> <X2 |wN>

v lvn) vlvz) o (v |vw)

(15)

For bosons, the equivalent structure is called the permanent of a matrix.

A permanent is the same as a determinant except all the minus signs are

replaced by plus signs. It doesn’t seem to have its own notation so we’ll
just write it as “perm’.



SECOND QUANTIZING A SINGLE-PARTICLE OPERATOR 4

xalvn)  alvz) o alvw)
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(16)
Now we can apply a creation operator a; to the state [¢1,...,9¥N) (as
far as I can tell, the state ¢ can be any state, including one that is a linear
combination of the ;). This gives

a;|¢17--'a¢N>:W,%a---ﬂ/fN) (17)

If we want to discover the action of an annihilation operator, things are a
bit more complicated, since we can choose to annihilate a linear combina-
tion of the basis states rather than just a single basis state. Again, as far as
I can tell, this annihilation operation works only on the original N-particle
state |¢1,...,¢n). We want to find ag|t)1,...,9n) so we take the inner
product with some other state |xi,...,xn_1) (We use an N — 1 particle
state so that the number of particles match up on both sides):

<X17"‘7XN—1‘a¢‘¢17"'7¢N>:<¢17 7XN—1>* (18)
:<¢17"'a¢]\7|¢7X1)"'7XN—1>* (19)

(Wile)  (hlxa) - (rlxav-r)
(Vald)  (alx1) - (Valxwv—1)

(Wnls) Gewla) o Gowlo—) |
(20)

where the subscript & on the determinant means to use the permanent if
we’re talking about bosons so that £ = 1. From here on, I mean ’deter-
minant or permanent’ whenever I say ’determinant’. We can expand the
determinant about the first column to get

N
(X1eeoxv—t fag | Orseow) = Y €87 Wk lo) (Wi, (no k) - [ -
k=1

1)

N
Z Yolwe) (X1, o xn—1]t1, ... (no ), ...

(22)

y XN —

UN)

0
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where the state [¢1,...(no ¥),...,1¥N) is the state |11, ..., n_1) without
Y,. The clever thing about this form is that we made no assumptions about

the state |x1,..., xn_1) SO we can remove it from both sides to get
A
aglr,... vny =Y, € (bWr) 1, ... (n01hy) ... dN) (23)
k=1

Example. Suppose we have a 3-boson system and

¢) = g|¢1>+§|¢2>+%|¢3> (24)
Then
(plv1) = ? (25)
(Pl2) = ? (26)
(614s) =5 @)
SO
V2 V6

6 1
ag 1)) = |¢2¢3>+T|¢1¢3>+§|¢1¢2> (28)

3

Now suppose we apply a creation operator:

N

ahag |, Ny = Y &b lk)al v, .. (no Yy, ... dn)  (29)

k=1
N
=Y ol s, (no ), n)  (30)
k=1

For the fermion case, we can swap « with all the states ¢, ...,%;_1 and
since swapping rows in a determinant changes the sign, this results in a
factor of £¥~! which eliminates the other £~ ! (since £2(k—1) = 1 always),
so we get the final form

N
ahag|tr,... 0Ny = Y (@r) W1, ko1, g, 0n) (D)

k=1



SECOND QUANTIZING A SINGLE-PARTICLE OPERATOR 6

For bosons, swapping columns in a permanent makes no difference to the
result and since £ = 1 in this case we can just ignore the ¢! factor.

After all this, we can get back to our original operator A. Since it’s a
single-particle operator, we can assume that its multi-particle equivalent’s
effect on a multi-particle state is the sum of the single-particle operator’s
effects on each individual particle within the state. That is, from 2] the inner
product of the state (/3| is taken with each |t/}) in turn and the result summed
over k. Calling the multi-particle operator A we have

Ar-ortin) = EL 1o} Aas (31 . (00 ) o) G
—-%;2;«4aﬁ Bl 01, k1,0, Vgt 0N) (33)

= Z“;laﬂalaﬂ U1, UN) (34)

In the second line ?Vi inserted the state |a) into |11, ... (00 ), ..., YN)

at the position occupied by v, since Ais a single-particle operator so it
operates on the same coordinate throughout (that is (3| operates on the same
coordinate as |«)). The last line follows from Therefore the multi-
particle operator is

A=Y Aypalag (35)
o,B
We can think of this as the operator looking for a particle (or component
of a particle) in each state 3, removing that particle and operating on it with
the single-particle operator A and then reinserting the particle in state |c).
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