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Second quantization is the expression of quantum mechanical states us-

ing particles rather than waves. We use creation and annihilation operators
acting on particle states to make transitions between states. If we have a
single-particle operator Â we can expand it using two unit operators as fol-
lows:

Â= ∑
α

|α〉〈α| Â∑
β

|β〉〈β| (1)

= ∑
α,β

|α〉Aαβ 〈β| (2)

where

Aαβ ≡
〈
α
∣∣Â∣∣β〉 (3)

Each of the sets |α〉 and |β〉 are complete, orthonormal sets of states
for a single particle. For multi-particle systems, we use the creation and
annihilation operators a†

p and ap to add or subtract particles from a state, so
we’d like to know how to define a multi-particle version Â of the single-
particle operator Â.

The route to this end is a bit complex, so bear with me. Suppose we
have a system of N particles. To satisfy the symmetry rules for bosons and
fermions, we can write a state of these N particles as

|ψ1, . . . ,ψN 〉=
1√
N ! ∑

P

ξP
N

∏
i=1

∣∣ψP (i)

〉
(4)

This notation requires a bit of explanation. First, we’re assuming that
each of the N particles is in a different state and that these states are or-
thonormal. Only in this case is the normalization factor 1√

N !
. (For example,

if we put 2 bosons into the same state |ψ1〉, the wave function is 1
2 |ψ1〉 |ψ1〉,

not 1√
2
|ψ1〉 |ψ1〉.) The P refers to a permutation of the integers 1, . . . ,N , and

P (i) is the ith integer in the permutation P . The product term ∏
N
i=1
∣∣ψP (i)

〉
1
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is a product of N single-particle states in a certain order, where the order
of the state in the product determines its spatial coordinate. For example, if
N = 3 then one permutation is P = 3,1,2 so for that permutation

3

∏
i=1

∣∣ψP (i)

〉
= |ψ3 (x1)〉 |ψ1 (x2)〉 |ψ2 (x3)〉 (5)

The factor ξ is +1 for bosons and −1 for fermions, and the sum over P
sums over all N ! possible permutations of the integers 1, . . . ,N , so the state
|ψ1, . . . ,ψN 〉 consists of N ! terms, each of which contains a product of N
different single particle states. [The fact that the states are all different isn’t
mentioned in Lancaster & Blundell’s book, but it seems to me that this is a
necessary condition.]

For the purposes of using P as an exponent in ξP , P can be regarded as
the number of swaps of integers in the original sequence 1, . . . ,N that are
required to get the permutation P . Thus, to get 3,1,2 from 1,2,3 we swap 1
with 2, then 2 with 3, so there are 2 swaps. Permutations requiring an even
(odd) number of swaps are called even (odd) permutations. For bosons, ξP

is always 1, while for fermions, ξP is +1 if P is even and −1 if P is odd.
Now suppose we have a different N -particle state given by

|χ1, . . . ,χN 〉=
1√
N ! ∑

Q

ξQ
N

∏
j=1

∣∣χQ(j)

〉
(6)

Here Q also represents a permutation. I’ve used a different symbol so that
we can treat P and Q as two different permutations.

The single-particle states |χi〉 also form a complete orthonormal set, but
they could be a different such set from the |ψi〉. If we take the inner product
of these two N -particle states we get the rather horrible expression

〈χ1, . . . ,χN |ψ1, . . . ,ψN 〉=
1
N ! ∑

P,Q

ξP+Q
N

∏
i=1

〈
χQ(i)

∣∣ψP (i)

〉
(7)

We need only one product since we are summing over both permutations P
and Q, so we get all possible inner products between terms from 4 and 6.
For example, if N = 2, then for fermions

|ψ1ψ2〉=
1√
2
(|ψ1 (x1)〉 |ψ2 (x2)〉− |ψ1 (x2)〉 |ψ2 (x1)〉) (8)

|χ1χ2〉=
1√
2
(|χ1 (x1)〉 |χ2 (x2)〉− |χ1 (x2)〉 |χ2 (x1)〉) (9)

On the RHS, we can form inner products only between single-particle
states that use the same spatial coordinate and, since 〈χi (x1) |ψj (x1)〉 =
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〈χi (x2) |ψj (x2)〉 (since we’re integrating over all space on both sides, the
integration coordinate doesn’t matter) we get

〈χ1χ2 |ψ1ψ2 〉=
1
2
[2〈χ1 |ψ1 〉〈χ2 |ψ2 〉−2〈χ1 |ψ2 〉〈χ2 |ψ1 〉] (10)

= 〈χ1 |ψ1 〉〈χ2 |ψ2 〉−〈χ1 |ψ2 〉〈χ2 |ψ1 〉 (11)

For any given permutation of the ψi or χi, the position coordinates can
be distributed among the N single-particle states in N ! ways. If we choose
a permutation Q for |χ1, . . . ,χN 〉 and P for |ψ1, . . . ,ψN 〉, then the product
∏
N
i=1
〈
χQ(i)

∣∣ψP (i)

〉
occurs N ! times because of the N ! ways of assigning

positions. For example, for N = 2, we can choose Q= 1,2 and P = 1,2 so
that

2

∏
i=1

〈
χQ(i)

∣∣ψP (i)

〉
= 〈χ1 |ψ1 〉〈χ2 |ψ2 〉 (12)

This combination can occur with χ1 and ψ1 functions of x1 and χ2 and ψ2
functions of x2 or χ1 and ψ1 functions of x2 and χ2 and ψ2 functions of x1.
In general, for any pairing of χi states with ψi states, there are N ! ways of
distributing the position coordinates, each of which gives the same product
of single-particle inner products. We can rewrite this by always ordering
the χi states in their original order 1, . . . ,N and pairing this ordering with
each permutation P of ψi states. That is

〈χ1, . . . ,χN |ψ1, . . . ,ψN 〉=
1
N ! ∑

P

ξPN !
N

∏
i=1

〈
χi
∣∣ψP (i)

〉
(13)

= ∑
P

ξP
N

∏
i=1

〈
χi
∣∣ψP (i)

〉
(14)

For fermions (with ξ =−1) this is actually the definition of the determi-
nant of a matrix (we’ll accept this mathematical result):

〈χ1, . . . ,χN |ψ1, . . . ,ψN 〉fermions =

∣∣∣∣∣∣∣∣
〈χ1 |ψ1 〉 〈χ1 |ψ2 〉 . . . 〈χ1 |ψN 〉
〈χ2 |ψ1 〉 〈χ2 |ψ2 〉 . . . 〈χ2 |ψN 〉

...
... . . . ...

〈χN |ψ1 〉 〈χN |ψ2 〉 . . . 〈χN |ψN 〉

∣∣∣∣∣∣∣∣
(15)

For bosons, the equivalent structure is called the permanent of a matrix.
A permanent is the same as a determinant except all the minus signs are
replaced by plus signs. It doesn’t seem to have its own notation so we’ll
just write it as ’perm’.
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〈χ1, . . . ,χN |ψ1, . . . ,ψN 〉bosons = perm


〈χ1 |ψ1 〉 〈χ1 |ψ2 〉 . . . 〈χ1 |ψN 〉
〈χ2 |ψ1 〉 〈χ2 |ψ2 〉 . . . 〈χ2 |ψN 〉

...
... . . . ...

〈χN |ψ1 〉 〈χN |ψ2 〉 . . . 〈χN |ψN 〉


(16)

Now we can apply a creation operator a†
φ to the state |ψ1, . . . ,ψN 〉 (as

far as I can tell, the state φ can be any state, including one that is a linear
combination of the ψi). This gives

a†
φ |ψ1, . . . ,ψN 〉= |φ,ψ1, . . . ,ψN 〉 (17)

If we want to discover the action of an annihilation operator, things are a
bit more complicated, since we can choose to annihilate a linear combina-
tion of the basis states rather than just a single basis state. Again, as far as
I can tell, this annihilation operation works only on the original N -particle
state |ψ1, . . . ,ψN 〉. We want to find aφ |ψ1, . . . ,ψN 〉 so we take the inner
product with some other state |χ1, . . . ,χN−1〉 (we use an N − 1 particle
state so that the number of particles match up on both sides):

〈
χ1, . . . ,χN−1

∣∣aφ∣∣ψ1, . . . ,ψN
〉
=
〈
ψ1, . . . ,ψN

∣∣∣a†
φ

∣∣∣χ1, . . . ,χN−1

〉∗
(18)

= 〈ψ1, . . . ,ψN |φ,χ1, . . . ,χN−1 〉∗ (19)

=

∣∣∣∣∣∣∣∣
〈ψ1 |φ〉 〈ψ1 |χ1 〉 . . . 〈ψ1 |χN−1 〉
〈ψ2 |φ〉 〈ψ2 |χ1 〉 . . . 〈ψ2 |χN−1 〉

...
... . . . ...

〈ψN |φ〉 〈ψN |χ1 〉 . . . 〈ψN |χN−1 〉

∣∣∣∣∣∣∣∣
∗

ξ
(20)

where the subscript ξ on the determinant means to use the permanent if
we’re talking about bosons so that ξ = 1. From here on, I mean ’deter-
minant or permanent’ whenever I say ’determinant’. We can expand the
determinant about the first column to get

〈
χ1, . . . ,χN−1

∣∣aφ∣∣ψ1, . . . ,ψN
〉
=

N

∑
k=1

ξk−1 〈ψk |φ〉∗ 〈ψ1, . . .(no ψk) , . . . ,ψN |χ1, . . . ,χN−1 〉∗

(21)

=
N

∑
k=1

ξk−1 〈φ |ψk 〉〈χ1, . . . ,χN−1 |ψ1, . . .(no ψk) , . . . ,ψN 〉

(22)
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where the state |ψ1, . . .(no ψk) , . . . ,ψN 〉 is the state |ψ1, . . . ,ψN−1〉 without
ψk. The clever thing about this form is that we made no assumptions about
the state |χ1, . . . ,χN−1〉 so we can remove it from both sides to get

aφ |ψ1, . . . ,ψN 〉=
N

∑
k=1

ξk−1 〈φ |ψk 〉 |ψ1, . . .(no ψk) , . . . ,ψN 〉 (23)

Example. Suppose we have a 3-boson system and

|φ〉=
√

2
3
|ψ1〉+

√
6

3
|ψ2〉+

1
3
|ψ3〉 (24)

Then

〈φ |ψ1 〉=
√

2
3

(25)

〈φ |ψ2 〉=
√

6
3

(26)

〈φ |ψ3 〉=
1
3

(27)

so

aφ |ψ1ψ2ψ3〉=
√

2
3
|ψ2ψ3〉+

√
6

3
|ψ1ψ3〉+

1
3
|ψ1ψ2〉 (28)

Now suppose we apply a creation operator:

a†
αaφ |ψ1, . . . ,ψN 〉=

N

∑
k=1

ξk−1 〈φ |ψk 〉a†
α |ψ1, . . .(no ψk) , . . . ,ψN 〉 (29)

=
N

∑
k=1

ξk−1 〈φ |ψk 〉 |α,ψ1, . . .(no ψk) , . . . ,ψN 〉 (30)

For the fermion case, we can swap α with all the states ψ1, . . . ,ψk−1 and
since swapping rows in a determinant changes the sign, this results in a
factor of ξk−1 which eliminates the other ξk−1 (since ξ2(k−1) = 1 always),
so we get the final form

a†
αaφ |ψ1, . . . ,ψN 〉=

N

∑
k=1
〈φ |ψk 〉 |ψ1, . . . ,ψk−1,α,ψk+1, . . . ,ψN 〉 (31)
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For bosons, swapping columns in a permanent makes no difference to the
result and since ξ = 1 in this case we can just ignore the ξk−1 factor.

After all this, we can get back to our original operator Â. Since it’s a
single-particle operator, we can assume that its multi-particle equivalent’s
effect on a multi-particle state is the sum of the single-particle operator’s
effects on each individual particle within the state. That is, from 2 the inner
product of the state 〈β| is taken with each |ψk〉 in turn and the result summed
over k. Calling the multi-particle operator Â we have

Â |ψ1, . . . ,ψN 〉= ∑
k

∑
α,β

|α〉Aαβ 〈β |ψk 〉 |ψ1, . . .(no ψk) , . . . ,ψN 〉 (32)

= ∑
k

∑
α,β

Aαβ 〈β |ψk 〉 |ψ1, . . . ,ψk−1,α,ψk+1, . . . ,ψN 〉 (33)

= ∑
α,β

Aαβa†
αaβ |ψ1, . . . ,ψN 〉 (34)

In the second line we inserted the state |α〉 into |ψ1, . . .(no ψk) , . . . ,ψN 〉
at the position occupied by ψk since Â is a single-particle operator so it
operates on the same coordinate throughout (that is 〈β| operates on the same
coordinate as |α〉). The last line follows from 31. Therefore the multi-
particle operator is

Â= ∑
α,β

Aαβa†
αaβ (35)

We can think of this as the operator looking for a particle (or component
of a particle) in each state β, removing that particle and operating on it with
the single-particle operator Â and then reinserting the particle in state |α〉.
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