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We’ve seen that we can second quantize a single-particle operator A us-
ing lcreation and annihilation operators to get the multi-particle version:
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Using this result, we can get second quantized versions of some common
operators. The unit operator is
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so the multi-particle version is
A=Y alaq (©)

Since a a,, is the number operator, it counts the number of particles in
state o so 7 gives the total number of particles in the multi-particle state.
[’m still not clear as to whether this result is supposed to apply to states
where there are more than one particle in a given momentum state. The
derivation of [T] appears to assume that each particle is in a different single-
particle state, so it seems safer to assume that aa, can return only O or
1.]

For the momentum operator (we’re still looking at the particle in a box,

so momentum states are still discrete) we have
1
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The multi-particle version is therefore

q,p
=Y pajap (11)
P

We can extend this result to functions of momentum f (p). First, we look
at powers of the momentum operator, where we can use induction to prove
that (p)" |p) = p™ |p). We know this is true for n = 1 so assume it’s true for
n — 1. Then

)" [p) =p(B)" ' [p) (12)
=p""'p|p) (13)
=" |p) (14)

QED. That is, |p) is an eigenvector of ()" with eigenvalue p™.
Now if the function f (p) can be expanded in powers of p then

f(B) = fo+ fib+ f207+ ... (15)
where the f; are constants. Now|p) is an eigenvector of the term f;p’ in

the series with eigenvalue p’. In other words, we’re replacing a series in the
operator p with an identical series in its eigenvalue, so

f®)p)=r(p)p) (16)
(qlf (P)Ip) = f(p)(q|p) (17)
=f(p 5qp (18)

Therefore the second-quantized version of f (P) is

A=Y f(p)ajap (19)
P

=Y /(p)fp (20)
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The interpretation is that the operator f acts separately on each particle with
the total result being the sum of its values for all particles.

For example, the hamiltonian for a single free particle is 4 = p>/2m so
the hamiltonian for a collection of free particles is

A p2
H :%‘,%np (21)

The potential energy is usually given as a function of position, so using
the momentum eigenfunction |p) = ﬁe’”"x (where V is the volume of the

box) we have from|[I]

(a[V[p) = 35 [ 3V (x)e P (22)
_ % / P e~ 0-0xy (x) (23)
=Vp—q (24)

The potential can then be second quantized as

V=Y Vpqafaq (25)
pP.q

Example. Suppose we have a 3 state system with a hamiltonian

3
H=EF, Z ajai + W [a;az — a1a3 —HL;al + a§a3 — aéal +a§a2 (26)
=1

=T+V (27)

where W and FEj are constants, 7' is the kinetic energy (the first term) and V'
is the potential energy (the second term). 7' is diagonal but V' is not; we can
see the effect of V' on the basis states [100), [010) and |001) by observing
that aiaz |010) = |100) (annihilate state 2 and create state 1), a;az |100) =0
(no particle in state 2 so annihilation of state 2 produces 0) and so on.

V|100) = W (]010) — [001)) (28)
V[010) = W (|100) +[001)) (29)
V[001) = W (—[100) +|010)) (30)

We can write the hamiltonian as a matrix
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H=T+V (1)
100 0 1 -1

—E |01 0|+W]| 1 0 1 (32)
00 1 11 0

Each element in the hamiltonian matrix is given by the matrix element be-
tween two states. For example, <100 ‘H ‘ 010> is found by substituting for

H from[26|and using the actions of the creation and annihilation operators.

3
Eo Y ala; 010> -
1=1

<100 ‘W [a{az — aIa3 + a;al + a§a3 — agal + agaz] ‘ 010>
(33)
The kinetic energy term gives zero, since it requires us to annihilate a partic-

ular particle and then create the same particle again. This gives a non-zero
result only for particle 2, but this state is orthogonal to |100). Thus we’d get

<100

The potential energy term is worked out in a similar fashion.
In this form 28] would be written as

(100 || 010) = <100

3
Ey Z azai
i=1

010> = E¢(100(010) =0 (34)

0 1 -177T1 0
Viooy=w| 1 0 1 ol=w| 1 (35)
~1 1 0 0 ~1

Finding the energies and eigenstates of this hamiltonian means we need
to find the eigenvalues and eigenvectors of H, which turn out to be

E=FEy+W, Eg+ W, Eg—2W (36)
The ground state |Q) (assuming W > 0) has energy Ey —2W and its
eigenvector is
1
V3

The other energy level Ey+ W is doubly degenerate and its 2-d space of
eigenvectors is spanned by

Q) (1100) — [010) +001)) 37)
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(—[100) +1001)), (/100) + |010)) (38)
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