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We’ve seen that we can second quantize a single-particle operator Â us-

ing creation and annihilation operators to get the multi-particle version:

Â= ∑
α,β

Aαβa†
αaβ (1)

Using this result, we can get second quantized versions of some common
operators. The unit operator is

1̂ = ∑
γ

|γ〉〈γ| (2)

so

〈
α
∣∣1̂∣∣β〉=〈α ∣∣∣∣∣∑γ |γ〉〈γ|

∣∣∣∣∣β
〉

(3)

= ∑
γ

δαγδγβ (4)

= δαβ (5)

so the multi-particle version is

n̂= ∑
α

a†
αaα (6)

Since a†
αaα is the number operator, it counts the number of particles in

state α so n̂ gives the total number of particles in the multi-particle state.
[I’m still not clear as to whether this result is supposed to apply to states
where there are more than one particle in a given momentum state. The
derivation of 1 appears to assume that each particle is in a different single-
particle state, so it seems safer to assume that a†

αaα can return only 0 or
1.]

For the momentum operator (we’re still looking at the particle in a box,
so momentum states are still discrete) we have
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p̂ |p〉= p |p〉 (7)

〈q |p̂|p〉= p〈q |p〉 (8)
= pδqp (9)

The multi-particle version is therefore

p̂= ∑
q,p

pδqpa
†
qap (10)

= ∑
p

pa†
pap (11)

We can extend this result to functions of momentum f (p). First, we look
at powers of the momentum operator, where we can use induction to prove
that (p̂)n |p〉= pn |p〉. We know this is true for n= 1 so assume it’s true for
n−1. Then

(p̂)n |p〉= p̂(p̂)n−1 |p〉 (12)

= pn−1p̂ |p〉 (13)

= pn |p〉 (14)

QED. That is, |p〉 is an eigenvector of (p̂)n with eigenvalue pn.
Now if the function f (p̂) can be expanded in powers of p̂ then

f (p̂) = f0 +f1p̂+f2p̂2 + . . . (15)

where the fi are constants. Now|p〉 is an eigenvector of the term fip̂i in
the series with eigenvalue pi. In other words, we’re replacing a series in the
operator p̂ with an identical series in its eigenvalue, so

f (p̂) |p〉= f (p) |p〉 (16)

〈q |f (p̂)|p〉= f (p)〈q |p〉 (17)

= f (p)δqp (18)

Therefore the second-quantized version of f (p̂) is

Â= ∑
p
f (p)a†

pap (19)

= ∑
p
f (p) n̂p (20)
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The interpretation is that the operator f acts separately on each particle with
the total result being the sum of its values for all particles.

For example, the hamiltonian for a single free particle is Ĥ = p̂2/2m so
the hamiltonian for a collection of free particles is

Ĥ = ∑
p

p2

2m
n̂p (21)

The potential energy is usually given as a function of position, so using
the momentum eigenfunction |p〉= 1√

V e
−ip·x (where V is the volume of the

box) we have from 1

〈
q
∣∣V̂ ∣∣p〉= 1

V

∫
d3x eiq·xV (x)e−ip·x (22)

=
1
V

∫
d3x e−i(p−q)·xV (x) (23)

≡ Ṽp−q (24)

The potential can then be second quantized as

V̂ = ∑
p,q
Ṽp−qa

†
paq (25)

Example. Suppose we have a 3 state system with a hamiltonian

Ĥ = E0

3

∑
i=1

a†
iai+W

[
a†

1a2−a†
1a3 +a

†
2a1 +a

†
2a3−a†

3a1 +a
†
3a2

]
(26)

≡ T +V (27)

whereW andE0 are constants, T is the kinetic energy (the first term) and V
is the potential energy (the second term). T is diagonal but V is not; we can
see the effect of V on the basis states |100〉, |010〉 and |001〉 by observing
that a†

1a2 |010〉= |100〉 (annihilate state 2 and create state 1), a†
1a2 |100〉= 0

(no particle in state 2 so annihilation of state 2 produces 0) and so on.

V |100〉=W (|010〉− |001〉) (28)

V |010〉=W (|100〉+ |001〉) (29)

V |001〉=W (−|100〉+ |010〉) (30)

We can write the hamiltonian as a matrix
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Ĥ = T +V (31)

= E0

 1 0 0
0 1 0
0 0 1

+W
 0 1 −1

1 0 1
−1 1 0

 (32)

Each element in the hamiltonian matrix is given by the matrix element be-
tween two states. For example,

〈
100

∣∣Ĥ∣∣010
〉

is found by substituting for
Ĥ from 26 and using the actions of the creation and annihilation operators.

〈
100

∣∣Ĥ∣∣010
〉
=

〈
100

∣∣∣∣∣E0

3

∑
i=1

a†
iai

∣∣∣∣∣010

〉
+〈

100
∣∣∣W [

a†
1a2−a†

1a3 +a
†
2a1 +a

†
2a3−a†

3a1 +a
†
3a2

]∣∣∣010
〉

(33)

The kinetic energy term gives zero, since it requires us to annihilate a partic-
ular particle and then create the same particle again. This gives a non-zero
result only for particle 2, but this state is orthogonal to |100〉. Thus we’d get〈

100

∣∣∣∣∣E0

3

∑
i=1

a†
iai

∣∣∣∣∣010

〉
= E0 〈100 |010〉= 0 (34)

The potential energy term is worked out in a similar fashion.
In this form 28 would be written as

V |100〉=W

 0 1 −1
1 0 1
−1 1 0

 1
0
0

=W

 0
1
−1

 (35)

Finding the energies and eigenstates of this hamiltonian means we need
to find the eigenvalues and eigenvectors of Ĥ , which turn out to be

E = E0 +W, E0 +W, E0−2W (36)

The ground state |Ω〉 (assuming W > 0) has energy E0− 2W and its
eigenvector is

|Ω〉= 1√
3
(|100〉− |010〉+ |001〉) (37)

The other energy level E0 +W is doubly degenerate and its 2-d space of
eigenvectors is spanned by
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1√
2
(−|100〉+ |001〉) , 1√

2
(|100〉+ |010〉) (38)


