
NOETHER’S THEOREM AND CONSERVATION OF ENERGY
AND MOMENTUM

Link to: physicspages home page.
To leave a comment or report an error, please use the auxiliary blog.
Reference: W. Greiner & J. Reinhardt, Field Quantization, Springer-

Verlag (1996), Chapter 2, Section 2.4.
An important example of Noether’s theorem is the conservation of energy

and momentum as consequences of the invariance of the action under coor-
dinate translation in spacetime. Noether’s theorem applies to the situation
where we transform the coordinates according to

x′µ = xµ+ δxµ (1)
resulting in a variation of the fields

φ′r
(
x′
)
= φr (x)+ δφr (x) (2)

If this variation in coordinates and fields leaves the action integral un-
changed, Noether’s theorem says that the following condition must be sat-
isfied:

∂µ
(
∂L(x)
∂ (∂µφr)

(δφr (x)−∂νφrδxν)+L(x)δxµ
)
= 0 (3)

By integrating this over 3-d space and using Gauss’s law, we find a con-
served quantity G, given by

G≡
ˆ
V
d3x ∂µ

(
∂L(x)
∂ (∂0φr)

(δφr (x)−∂νφrδxν)+L(x)δx0

)
(4)

Suppose we consider a translation in spacetime, so that the coordinates
transform according to

x′µ = xµ+ εµ (5)
where the εµs are infinitesimal (and independent) constants. That is,

we’re free to vary any (or all) of the coordinates by some infinitesimal
amount. In particular, we can choose to make only one of the εµ varia-
tions non-zero. For example, we might choose ε0 to be non-zero with the
remaining three εi = 0, which amounts to a translation in time but not in
position.
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Such a translation means that we perform the same experiment (the same
’physics’) at a different time and/or at a different place, and we require that
we get the same result under all such translations. Note that this does not
mean that the behaviour of a system is independent of time or space. Rather,
what it is saying is that if we imagine that the only thing that exists in the
universe is the physical system we’re studying, it shouldn’t matter if we
move the system to some other location, or start the experiment at an earlier
or later time; in all cases we should observe the same behaviour. The system
might evolve to different states as time passes, but the time-dependence of
the system will be the same, as measured from the starting point we have
chosen.

In terms of the fields, this amounts to saying that the fields will have ex-
actly the same form when expressed in terms of the translation coordinates,
that is

φ′r
(
x′
)
= φr (x) (6)

[Recall from our earlier discussion that x′ and x both refer to the same
point, but written in different coordinate systems. Under a translation, the
value of a scalar field remains the same, as does a vector field, since all
we’ve done is move the coordinate axes parallel to themselves. This is dif-
ferent from a rotation of the coordinates, under which a vector does changes
its components in the new coordinate system (although its length remains
unchanged).]

Thus we have

δφr (x) = 0 (7)

and from 3

∂µ
(
∂L(x)
∂ (∂µφr)

∂νφr−gµνL(x)
)
εν = 0 (8)

where we’ve used δxν = εν and used the metric tensor gµν to lower the
index: εµ = gµνε

ν . Since the εν are arbitrary, we must have

∂µ
(
∂L(x)
∂ (∂µφr)

∂νφr−gµνL(x)
)
= 0 (9)

for each value of ν = 0,1,2,3 separately. Thus we get four conservation
laws.

For ν = 0 we can apply the same procedure that was used to derive 4
from 3. That is, we integrate over 3-d space and use Gauss’s law:
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ˆ
V
d3x ∂i

(
∂L(x)
∂ (∂iφr)

∂0φr−gi0L(x)
)
= ∂0

ˆ
V
d3x

(
∂L(x)
∂ (∂0φr)

∂0φr−g00L(x)
)

(10)
On the LHS, the index i runs over the spatial indexes 1,2 and 3, and we’ve

set ν = 0 on both sides. The integral on the LHS is a divergence, so we use
Gauss’s law to convert this to a surface integral and extend the surface to
infinity, requiring the integrand to go to zero fast enough that the integral is
zero in the limit. We then get that

∂0
ˆ
V
d3x

(
∂L(x)
∂ (∂0φr)

∂0φr−g00L(x)
)
= 0 (11)

so that the integral is a conserved quantity (it has zero time derivative).
Comparing this with Hamilton’s equations of motion, we have the conju-

gate momentum density

π =
∂L(x)
∂ (∂0φr)

(12)

so the integrand of 11 becomes Hamilton’s equation for the Hamiltonian
density (using g00 = 1 in flat space):

∂L(x)
∂ (∂0φr)

∂0φr−g00L(x) = πrφ̇r−L=H (13)

SinceH is the energy density, 11 says that the total energy of the system
is constant in time, so energy is conserved.

We can repeat the procedure for the other three values of ν to get

∂0
ˆ
V
d3x

(
∂L(x)
∂ (∂0φr)

∂iφr−g0iL(x)
)
= 0 (14)

where the index i= 1,2,3.
Since g0i = 0 in flat space, the integrand reduces to

pi =
∂L(x)
∂ (∂0φr)

∂iφr = πr
∂φr
∂xi

(15)

As we’ve seen earlier, we can interpret this quantity as the physical mo-
mentum density, so 14 says that each component of the total physical mo-
mentum is conserved. Thus requiring a physical system to be invariant
under translation in spacetime results in the laws of conservation of energy
and linear momentum.

Going back to 9, the general conservation law says that

∂µTµν = 0 (16)
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where

Tµν ≡
∂L(x)
∂ (∂µφr)

∂νφr−gµνL(x) (17)

is the energy-momentum tensor and is defined for all values of µ and ν in
the range 0,1,2,3. [G & R use the symbol Θµν for this tensor, but as it’s the
same as the stress-energy tensor, we’ll try to keep the notation consistent at
this point.]
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