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Before we apply Noether’s theorem to Lorentz transformations, we need

to take a step back and look at a generalized version of the Lorentz transfor-
mation. Most introductory treatments of special relativity derive the Lorentz
transformation as the transformation between two inertial frames that are
moving at some constant velocity with respect to each other. This form of
the transformations allows us to derive the usual consequences of special
relativity such as length contraction and time dilation. However, it’s useful
to look at a Lorentz transformation is a more general way.

The idea is to define a Lorentz transformation as any transformation that
leaves the magnitude of all four-vectors x unchanged, where this magnitude
is defined using the usual flat space metric gµν so that

x2 = xµxµ = gµνxµxν = x2
0− x2

1− x2
2− x2

3 (1)

The flat space (Minkowski) metric is

g =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 (2)

We know that the traditional Lorentz transformation between two inertial
frames in relative motion satisfies this condition, but in fact a rotation of
the coordinate system in 3-d space (leaving the time coordinate unchanged)
also satisfies this condition, so a Lorentz transformation defined in this more
general way includes more transformations than the traditional one.

We can define this general transformation in terms of a 4× 4 matrix Λ,
so that a four-vector x transforms to another vector x′ according to

x′ = Λx (3)

We can define the scalar product of two 4-vectors using the notation
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〈x,y〉 ≡
3

∑
i=0

xiyi (4)

The scalar product in flat space using the Minkowski metric g is therefore

〈x,gy〉= gµνxµyν = x0y0− x1y1− x2y2− x3y3 (5)
In matrix notation, in which x and y are column vectors, this is

〈x,gy〉= xT gy (6)
In this way, the condition that Λ leaves the magnitude unchanged is

〈Λx,gΛx〉= 〈x,gx〉 (7)
for all x. In matrix notation, this is

(Λx)T gΛx = xT
Λ

T gΛx = xT gx (8)
from which we get one condition on Λ:

Λ
T gΛ = g (9)

[Note that Jaffe uses a superscript tr to indicate a matrix transpose; I find
this confusing as tr usually means the trace of a matrix, and a superscript T
is more usual for the transpose.]

Because both sides of 9 refer to a symmetric matrix (on the LHS,
(
ΛT gΛ

)T
=

ΛT gT (ΛT)T
=ΛT gΛ), this equation gives 10 independent equations for the

elements of Λ, so the number of parameters that can be specified arbitrarily
is 4×4−10 = 6.

The set L of all Lorentz transformations forms a group under matrix mul-
tiplication, known as the Lorentz group. We can demonstrate this by show-
ing that the four group properties are satisfied.

First, completeness. If we perform two transformations in succession on
a 4-vector x then we get x′=Λ2Λ1x. The compound transformation satisfies
9:

(Λ2Λ1)
T gΛ2Λ1 = Λ

T
1 Λ

T
2 gΛ2Λ1 (10)

= Λ
T
1 gΛ1 (11)

= g (12)

Thus the group is closed under multiplication.
Second, associativity is automatically satisfied as matrix multiplication

is associative.

http://physicspages.com/pdf/Mathematics/Group theory 01 - definitions and examples.pdf


LORENTZ TRANSFORMATIONS AS ROTATIONS 3

An identity element exists in the form of the identity matrix I, which is
itself a Lorentz transformation as it satisfies 9.

Finally, we need to show that every matrix Λ has an inverse that is also
part of the set L. Taking the determinant of 9 we have

det
(
Λ

T gΛ
)

=
(
detΛ

T)(detg)(detΛ) (13)
= (detΛ)(detg)(detΛ) (14)

= −(detΛ)2 (15)

since detg =−1 from 2. From the RHS of 9, this must equal detg =−1
so we have

−(detΛ)2 = −1 (16)
detΛ = ±1 (17)

From a basic theorem in matrix algebra, any matrix with a non-zero de-
terminant has an inverse, so Λ−1 exists. To show that Λ−1 is a Lorentz
transformation, we can take the inverse of 9 and use the fact that g−1 = g:

(
Λ

T gΛ
)−1

= g−1 = g (18)

= Λ
−1g

(
Λ

T)−1
(19)

= Λ
−1g

(
Λ
−1)T

(20)

since the inverse and transpose operations commute (another basic theo-
rem in matrix algebra). Therefore Λ−1 is also a valid Lorentz transforma-
tion.

We can also see that ΛT is a valid transformation by left-multiplying by
Λ and right-multiplying by ΛT :

g = Λ
−1g

(
Λ
−1)T

(21)

ΛgΛ
T =

(
ΛΛ
−1)g

(
Λ
−1)T

Λ
T (22)

= g (23)

We need one more property of Λ concerning the element Λ00. Again
starting from 9, the 00 component of the RHS is g00 = 1, and writing out
the 00 component of the LHS explicitly we have

[
Λ

T gΛ
]

00 = Λ
2
00−

3

∑
i=1

Λ
2
i0 = 1 (24)
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This gives

Λ00 =±

√√√√1+
3

∑
i=1

Λ2
i0 (25)

Thus either Λ00 ≥ 1 or Λ00 ≤−1.
From the determinant and Λ00, we can classify a particular transforma-

tion matrix Λ as being in one of four so-called connected components. Jaffe
spells out in detail the proof that these four components are disjoint, that is,
we can’t define some parameter s that can be varied continuously to move a
matrix Λ from one connected component to another connected component.
The notation L↑+ indicates the set of matrices with detΛ = +1 (indicated
by the + subscript) and Λ00 ≥ 1 (indicated by the ↑ superscript). The other
three connected components areL↑− (detΛ=−1, Λ00≥ 1); L↓+ (detΛ=+1,
Λ00 ≤ 1); and L↓− (detΛ =−1, Λ00 ≤ 1). Not all of these subsets of L form
groups, as some of them are not closed under multiplication.

If detΛ =+1, Λ is called proper, and ifdetΛ =−1, Λ is called improper.
If Λ00 ≥+1, Λ is orthochronous, and ifΛ00 ≤−1, Λ is non-orthochronous.
From here on, we’ll consider only proper orthochronous transformations,
that is, the connected component L↑+.

Members of L↑+ can be subdivided again into two types: pure rotations
and pure boosts. A pure rotation is a rotation (about the origin) in 3-d
space, leaving the time coordinate unchanged. That is, Λ00 = +1. Such a
transformation can be written as

Λ =

[
1 0
0 R

]
(26)

whereR is a 3×3 matrix, and the 0s represent 3 zero components in the
top row and first column. We know that the off-diagonal elements in the
first column must be zero, since if Λ00 =+1, we have from 25 that

3

∑
i=1

Λ
2
i0 = 0 (27)

Since ΛT must also be a valid transformation, this gives the analogous
equation

3

∑
i=1

Λ
2
0i = 0 (28)

Thus the off-diagonal elements of the top row of Λ are also zero.
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Since detΛ = 1, we must have detR = 1. From 9, R must also be an
orthogonal matrix, that is, its rows must be mutually orthogonal (as must
its columns). For example, if we pick the 2,3 element in the product 9, we
have

[
Λ

T gΛ
]

23 = g23 = 0 (29)

= −
3

∑
i=1

Λi2Λi3 (30)

Thus columns 2 and 3 must be orthogonal.
These matrices form a group known as SO(3), the group of real, orthog-

onal, 3× 3 matrices with detR = +1. A familiar example is a rotation by
an angle θ about the z axis, for which

R=

 cosθ −sinθ 0
sinθ cosθ 0

0 0 1

 (31)

giving the full transformation matrix as

Λ =


1 0 0 0
0 cosθ −sinθ 0
0 sinθ cosθ 0
0 0 0 1

 (32)

In general, a rotation can be about any axis through the origin, in which
caseR gets more complicated, but the idea is the same.

We’ve already seen that a pure boost, that is, a transformation into a
second inertial frame moving at some constant velocity in a given direction
relative to the first frame, can be written as a rotation, if we use hyperbolic
functions instead of trig functions. In this case Λ00 > +1. The standard
situation from introductory special relativity is that of from S′ moving along
the x1 axis at some constant speed β . If we define

cosh χ ≡ γ =
1√

1−β 2
(33)

sinh χ ≡ βγ =
β√

1−β 2
(34)

then the transformation is

http://physicspages.com/pdf/Moore/Hyperbolic rotations.pdf
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Λ =


cosh χ sinh χ 0 0
sinh χ cosh χ 0 0

0 0 1 0
0 0 0 1

 (35)

This has determinant +1 since cosh2
χ − sinh2

χ = 1. We can verify by
direct substitution that 9 is satisfied.

It turns out that all proper, orthochronous Lorentz transformations can be
written as the product of a pure rotation and a pure boost, that is

Λ = BR (36)
where the pure rotation R is applied first, followed by a pure boost B.

(Jaffe doesn’t prove this at this point; we’ll return to this later.)

PINGBACKS

Pingback: Lorentz transformations as 2x2 matrices
Pingback: Lorentz transformations and the special linear group SL(2,C)
Pingback: Lorentz transformation as product of a pure boost and pure

rotation
Pingback: Noether’s theorem and conservation of angular momentum

http://physicspages.com/pdf/Greiner QFT/Greiner 02.04.07 Lorentz transformation is boost times rotation.pdf
http://physicspages.com/pdf/Greiner QFT/Greiner 02.04.05 2x2 matrices and points in R4.pdf
http://physicspages.com/pdf/Greiner QFT/Greiner 02.04.06 Lorentz transformation and the SL(2 C) group.pdf
http://physicspages.com/pdf/Greiner QFT/Greiner 02.04.07 Lorentz transformation is boost times rotation.pdf
http://physicspages.com/pdf/Greiner QFT/Greiner 02.04.07 Lorentz transformation is boost times rotation.pdf
http://physicspages.com/pdf/Greiner QFT/Greiner 02.04.08 Noether's theorem and conservation of angular momentum.pdf

	Pingbacks

