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Continuing our examination of general Lorentz transformations, we start

off with the representation of a spacetime 4-vector as a 2×2 complex Her-
mitian matrix:

x̂≡
[
x0 +x3 x1− ix2
x1 + ix2 x0−x3

]
(1)

Our ultimate goal is to show that any Lorentz transformation can be rep-
resented as the product of a pure rotation R and a pure boost B: Λ = RB.
The step shown in this post may look like little more than an exercise in
matrix algebra, but be patient; it takes a while to get to our final goal.

We start by looking at the matrices belonging to the special linear group
SL(2,C), which consists of 2× 2 matrices containing general complex
numbers as elements, and with determinant 1. Each matrix A ∈ SL(2,C)
can be used to define a linear transformation of the Hermitian matrix 1:

x̂′ = Ax̂A† (2)

Because the determinant of a product is equal to the product of the deter-
minants, and detA= detA† = 1, det x̂′ = det x̂= xµx

µ. Thus such a trans-
formation leaves the 4-vector length unchanged, so qualifies as a Lorentz
transformation. Also, as a general complex 2× 2 matrix contains 4 ele-
ments, each with a real and imaginary part, there are 8 parameters. The
condition detA= 1 provides 2 constraints (one on the real part and one on
the imaginary part), leaving 6 independent parameters, which is the same
as the number of free parametersin a general Lorentz transformation.

We can give a more detailed proof that A provides a Lorentz transforma-
tion as follows. Suppose we start with two matrices A,B ∈ SL(2,C) and
define a transformation

x̂′ = Ax̂B (3)
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[Remember that the hats on x̂ and x̂′ mean that we’re considering the 2×2
matrix version 1 of the 4-vectors x and x′.] The transformed matrix x̂′ must
be Hermitian for all x̂, so we must have

(Ax̂B)† = Ax̂B (4)

= B†x̂A† (5)

We now left-multiply by
(
B†)−1 and right-multiply by B−1 to get(
B†
)−1

Ax̂= x̂A†B−1 (6)

But we also have (
B†
)−1

A=
(
A†B−1

)†
(7)

so the matrix

T ≡
(
B†
)−1

A (8)

is Hermitian. We can therefore write 6 as

T x̂= x̂T † = x̂T (9)
so T commutes with x̂ for all x̂.
Now we can choose x = σ2 and then x = σ3, where the σis are two of

the Pauli matrices which we showed (together with the identity matrix σ0)
form a basis for the space of 2× 2 Hermitian matrices. Now we’ve seen
thatσ2 and σ3 also form an irreducible set, and we saw that any matrix T
that commutes with all the members of an irreducible set must be a multiple
of the identity matrix. Thus we must have

T = λI (10)
for some constant λ. However, since T is the product of two matrices

A and
(
B†)−1, both of which have determinant 1, detT = 1 also, which

means that λ2 = 1 and λ=±1. Therefore

(
B†
)−1

A = ±I (11)

A = ±B† (12)

Thus the transformation 3 can be written as

x̂′ =±Ax̂A† (13)
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To eliminate the − sign, suppose that

x̂′ =−Ax̂A† (14)

A Lorentz transformation giving this result can be written as

x̂′ = Λ̂x (15)

where Λ is the 4× 4 matrix giving the Lorentz transformation of the
original 4-vector x. In the original 4-vector notation, we have

x′µ =
3

∑
ν=0

Λµνxν (16)

= (Λx)µ (17)

From the relation betweenthe 4-vector and 2×2 matrix representations,
we have

x′µ =
〈
σµ, x̂

′〉 (18)

where 〈σµ, x̂′〉 is the inner product of the two matrices. Therefore from
14

(Λx)µ =
〈
σµ, x̂

′〉 (19)

= −
〈
σµ,Ax̂A

†
〉

(20)

= −

〈
σµ,A

(
3

∑
ν=0

σνxν

)
A†

〉
(21)

If we choose x= (1,0,0,0), we have

(Λx)0 = Λ00 (22)

= −

〈
σ0,A

(
3

∑
ν=0

σνxν

)
A†

〉
(23)

= −
〈
σ0,Aσ0A

†
〉

(24)

= −
〈
σ0,AA

†
〉

(25)

= −1
2

Tr
(
AA†

)
(26)

≤ 0 (27)
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where the penultimate line follows from the definition of the inner prod-
uct. The last line follows because

Tr
(
AA†

)
= |A11|2 + |A22|2 ≥ 0 (28)

Since we’re requiring the transformation to be orthochronous, we must
have Λ00 ≥ 1, so we must exclude the − sign in 13, giving 2.

Finally, we can show that the transformation matrix A is unique, up to a
sign. We can prove this by supposing that there are two different SL(2,C)
matrices A and B that give the same transformation for all x̂, that is

Ax̂A† =Bx̂B† (29)

This implies

B−1Ax̂A†
(
B†
)−1

= x̂ (30)

= B−1Ax̂
(
B−1A

)†
(31)

We can now choose x̂= I , which shows that

(
B−1A

)†
=
(
B−1A

)−1
(32)

which means (by definition), B−1A is unitary, so for all x̂

x̂=B−1Ax̂
(
B−1A

)−1
(33)

This means that B−1A commutes with x̂ for all x̂ (that’s the only way
we can cancel B−1A off the RHS). Using the same argument as above, we
can choose x̂ to be two of the Pauli matrices, which form an irreducible set.
Since B−1A commutes with both these matrices, it must be a multiple λ of
the identity:

B−1A = λI (34)
A = λB (35)

Since detA = detB = 1 and for a 2× 2 matrix det(λB) = λ2 detB, we
have λ2 = 1, so λ=±1. Therefore A is unique up to a sign.

In summary, what we’ve done in this post is show that a restricted Lorentz
transformation Λ (that is, one where detΛ =+1 and Λ00 ≥ 1) can be repre-
sented by a matrix A ∈ SL(2,C) where A is unique up to a sign.
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PINGBACKS

Pingback: Lorentz transformation as product of a pure boost and pure
rotation
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