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In nonrelativistic field theory, we’ve seen that one basis of the multi-

particle space can be given by the vectors

|n1,n2, . . . ,ni, . . .〉 (1)

where each ni represents a number of particles in energy state εi. This is
known as Fock space. We’d like to see the relation of Fock space to the
more usual position space, in which the particles are represented by their
positions in space. Greiner therefore defines the states

|x1,x2, . . . ,xn; t〉 ≡ 1√
n!
ψ̂† (x1, t) ψ̂

† (x2, t) . . . ψ̂
† (xn, t) |0〉 (2)

where the field operators are defined as Fourier series

ψ̂ (x, t) = ∑
i

âi (t)ui (x) (3)

ψ̂† (x, t) = ∑
i

â†
i (t)u

∗
i (x) (4)

and satisfy the commutation relations[
ψ̂ (x, t) , ψ̂† (x′, t)]= δ3 (x−x′

)
(5)

with all other commutators being zero.
The definition 2 represents a collection of n particles localized in space

at the points xi for i= 1, . . . ,n. We can now define the number operator as

N̂V ≡
ˆ
V
d3x ψ̂† (x, t) ψ̂ (x, t) (6)

where the integral is over some finite volume V . We can use the commu-
tators 3 and 4 to work out the commutator of N̂V (we’ll suppress the time
dependence from here on, as it’s always the same):
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[
N̂V , ψ̂

† (x)
]
=

ˆ
V
d3x′

[
ψ̂† (x) , ψ̂† (x′) ψ̂ (x′)] (7)

=

ˆ
V
d3x′ ψ̂† (x′)[ψ̂† (x) , ψ̂

(
x′
)]

(8)

=

ˆ
V
d3x′ ψ̂† (x′)δ3 (x−x′

)
(9)

=

{
ψ̂† (x) if x ∈ V
0 if x /∈ V

(10)

Using this commutator, we can work out the effect of operating on 2 with
N̂V . Consider first the two-particle case, where we have

N̂V |x1,x2〉 ≡
1√
2!
N̂V ψ̂

† (x1) ψ̂
† (x2) |0〉 (11)

Suppose that both x1 and x2 lie within V . Then we have

N̂V ψ̂
† (x1) ψ̂

† (x2) |0〉=
(
ψ̂† (x1)+ ψ̂

† (x1)N̂V

)
ψ̂† (x2) |0〉 (12)

=
(
ψ̂† (x1) ψ̂

† (x2)+ ψ̂
† (x1) ψ̂

† (x2)+ ψ̂
† (x1) ψ̂

† (x2)N̂V

)
|0〉

(13)

= 2ψ̂† (x1) ψ̂
† (x2) |0〉+0 (14)

= 2ψ̂† (x1) ψ̂
† (x2) |0〉 (15)

In the third line we’ve used the fact that N̂V |0〉= 0, since the first operator
in 6 to operate on the vacuum state |0〉 is the annihilation operator ψ̂ (x).

Using a similar argument, we can see that any particles lying outside
V will not be counted since for those particles

[
N̂V , ψ̂

† (x)
]
= 0 and the

number operator just passes through the corresponding creation operator.
The generalization of 15 shows that in general

N̂V |x1,x2, . . . ,xn; t〉= nV |x1,x2, . . . ,xn; t〉 (16)

where nV is the number of particles within V . Thus the states |x1,x2, . . . ,xn; t〉
are eigenstates of N̂V .

Finally, we can work out the normalization of the position space states,
again by applying the commutators. Again, we can start with a 2-particle
state:
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2!
〈
x′1,x

′
2 |x1,x2

〉
=
〈

0
∣∣∣ψ̂ (x′2) ψ̂ (x′1) ψ̂† (x1) ψ̂

† (x2)
∣∣∣0〉 (17)

=
〈

0
∣∣∣ψ̂ (x′2)(δ3 (x1−x′1

)
+ ψ̂† (x1) ψ̂

(
x′1
))
ψ̂† (x2)

∣∣∣0〉
(18)

= δ3 (x1−x′1
)〈

0
∣∣∣ψ̂ (x′2) ψ̂† (x2)

∣∣∣0〉+ (19)〈
0
∣∣∣ψ̂ (x′2) ψ̂† (x1)

(
δ3 (x2−x′1

)
+ ψ̂† (x2) ψ̂

(
x′1
))∣∣∣0〉

(20)

= δ3 (x1−x′1
)〈

0
∣∣∣ψ̂ (x′2) ψ̂† (x2)

∣∣∣0〉+ (21)

δ3 (x2−x′1
)〈

0
∣∣∣ψ̂ (x′2) ψ̂† (x1)

∣∣∣0〉+0 (22)

=
(
δ3 (x1−x′1

)
δ3 (x2−x′2

)
+ δ3 (x2−x′1

)
δ3 (x1−x′2

))
〈0 |0〉

(23)

= δ3 (x1−x′1
)
δ3 (x2−x′2

)
+ δ3 (x2−x′1

)
δ3 (x1−x′2

)
(24)

Again, we’ve used ψ̂ (x) |0〉= 0 to eliminate terms, and we’ve assumed the
vacuum state is normalized so that 〈0 |0〉 = 1. Note that the result allows
for all possible pairings of positions in the bra term (the primed coordinates)
with positions in the ket term (unprimed). This is because the particles are
assumed to be indistinguishable, so swapping positions has no effect on
the outcome. This behaviour is characteristic of bosons (and not fermions,
where we need to make different assumptions about the commutators).

In general, the result is as given by Greiner’s equation 3.40:

〈
x′1, . . . ,x

′
n |x1, . . . ,xn

〉
=

1
n! ∑

Permut
P
[
δ3 (x1−x′1

)
. . . δ3 (xn−x′n

)]
(25)

The permutation P means that we take all possible pairings of the first term
in the argument of the delta functions with the second term. For n positions
on each side, this means that the sum contains n! terms.
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