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A vector field is a vector function of position in space. For example, a

function giving the wind speed and direction at all points in the atmosphere
is a vector field, since at each point we must specify the wind as a vec-
tor whose magnitude gives the speed and whose direction gives the wind
direction.

The air in the atmosphere is a compressible fluid, so we can also define
a scalar field called the density. The density of the air in the atmosphere,
measured in mass per unit volume, can also be specified as a function of
position, but this time there is only a magnitude, hence the term ’scalar’.

Suppose we define the wind velocity as v and the air density as ρ. Now
consider an infinitesimal cube in the atmosphere, with side lengths of dx,
dy and dz and with one corner of the cube placed at the origin, with the
cube itself contained within the positive octant. What is the rate of flow of
air into the cube on the side lying in the plane x= 0?

To calculate this, we need only the component of v in the x direction,
since the other two components measure flow parallel to the plane x = 0
and do not cross the plane, so can’t contribute to flow across the plane.
In time dt, therefore, a block of air of volume (vxdt)(dy)(dz) flows into
the cube. Since the density is ρ the mass of air that flows into the cube is
ρ(vxdt)(dy)(dz) and the rate of flow is this quantity divided by dt or

ratex=0 = ρvxdydz (1)
Now the rate of flow out of the cube on the other side, through the plane

x= dx, can be found by realizing that ρ and vx are functions of position, so
to first order in x we have

ratex=dx = ρvxdydz+

[
∂

∂x
(ρvx)dx

]
dydz (2)

The net flow into (or out of, if the quantity is negative) the cube through
the two faces is the difference between these two quantities, so

net flowx =

[
∂

∂x
(ρvx)dx

]
dydz (3)

The same argument can be applied to the y and z directions, so the total
net flow into the cube from all three directions is
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net flowtotal =

[
∂

∂x
(ρvx)dx

]
dydz+

[
∂

∂y
(ρvy)dy

]
dxdz+

[
∂

∂z
(ρvz)dz

]
dxdy

(4)

=

[
∂

∂x
(ρvx)+

∂

∂y
(ρvy)+

∂

∂z
(ρvz)

]
dxdydz (5)

The quantity in brackets can be written in a shorthand notation as

∇ · (ρv)≡ ∂

∂x
(ρvx)+

∂

∂y
(ρvy)+

∂

∂z
(ρvz) (6)

This is known as the divergence, since it measures the net flow into or
out of an incremental volume in a fluid.

Now suppose we consider some volume that is simply connected (that
is, a volume that doesn’t contain any holes), and divide it up into a large
number of infinitesimal cubes. Suppose we define some vector field A over
this volume. In the case of the atmosphere, we could have A = ρv, but
we’re considering a general vector field that could represent any number of
things (it could be electric field, for example). Each face of a little cube
can have an area element dσ defined, which is a vector whose magnitude
is the area of that face, and whose direction is perpendicular to and faces
outwards from the face. The normal component of A at a given face of the
cube multiplied by the area of the face is then A ·dσ and the result above is
equivalent to saying

∑
all faces

A ·dσ = ∇ ·Adτ (7)

where dτ is the volume of the cube: dτ = dxdydz.
Now if we add up this quantity for all the little cubes in the overall vol-

ume, we can see that in the interior of the volume where each face of a cube
adjoins a face of a neighbouring cube, the contributions of the two joined
faces will be equal and opposite. In other words, what flows out of one
face must flow into the face that it lies next to. So all contributions from
adjoining internal faces will cancel, and we are left with only those faces
that lie on the surface of the volume; faces that do not have any adjoining
faces. Any flow out of such faces represents fluid lost by the volume, and
any flow into such faces represents fluid gained by the volume.

So the sum on the left reduces to a sum over only those faces that lie on
the surface of the volume, which is a surface integral. That is, we get the
result
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ˆ
S

A ·dσ =

ˆ
V

∇ ·Adτ (8)

In other words, the surface integral of the normal component of a vector
field A is equal to the volume integral of the divergence of that field. This
result is known as the divergence theorem, or sometimes as Gauss’s law or
Gauss’s theorem.
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