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If an object carries a surface charge distribution, the electric field (due to

the charge distribution itself or any other external field) will exert a force on
the surface charge. If this charge is constrained to lie on the surface of the
object (for example, if the object is a conductor, so that all excess charge
lies on the surface), then the electric field will create a pressure (which is
force per unit area) by its action on this surface charge.

The question is: what is the force on a surface charge distribution? This
is a somewhat tricky question, since we’ve seen that the component of the
electric field that is normal to the surface is discontinuous, with a difference
of σ/ε0 from one side of the surface to the other (where σ is the surface
charge density).

To answer this question, we can consider some arbitrary surface (not nec-
essarily a conductor) which has surface charge distributed over it. We can
also consider a small patch on this surface and examine the fields acting on
it. We’ve seen (Example 1 here) that, for an infinite plane of charge, the
field is σ/2ε0 on each side of the plane, pointing away from the plane (for
positive charge) on both sides. Now if we’re considering a small patch of a
surface, that’s clearly not an infinite plane, but if we also consider the field
just above (or below) this patch, then we can say that we’re considering the
field at a distance from the patch that is very small compared to the dimen-
sions of the patch. In such a case we expect the field to become arbitrarily
close to that for an infinite plane.

For example, if we consider the case of a circular disk of charge which
we solved earlier (Example 1 here), the field at location z on the axis of the
disk is
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In the limit z�R (whereR is the diameter of the disk), we see that this ex-
pression tends to σ/2ε0. Similar limits for other geometries always produce
the same result.

So we can split the electric field in the area of the patch into two contri-
butions. The first is due to the patch itself, and is σ/2ε0 pointing normal to
the surface on both sides, and some other field E1 which could be anything,
depending on the geometry of the surface and other fields in the vicinity.
That is, we can say that the fields above and below the patch are
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We can solve these two equations to find the ’other’ field

E1 =
1
2
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That is, if we know the field on either side of the patch, we can find
the field acting on the patch, and it turns out to be just the average of the
field on either side of the patch (that is, on either side of the discontinuity).
Furthermore, we can say that E1 is the only field that acts on the patch,
since a charge’s field doesn’t act on the charge itself. (OK, this argument is
a bit dodgy, since we’re not considering a point charge, but rather a small
patch, so that technically, yes, the field produced by one part of the patch
does act on other parts of the same patch. However, we’re juggling two
limits here: in the first place we’re assuming that the size of the patch is
small enough that we can consider its field to be almost that due to a point
charge so that the field doesn’t act back on the patch itself. In the second
place, we’re considering that the distance above the patch is small relative
to the size of the patch so that we say the field due to the patch is σ/2ε0. So
we’re essentially nesting one infinitesimal inside another.)

The argument so far is valid for any surface charge. In the special case
of a conductor, we know the fields above and below the surface. Below
the surface (that is, inside the conductor) we know that Ebelow = 0, and just
above the surface we know that Eabove = σ

ε0
n̂ (the field at the surface of a

conductor is always normal to the surface). In this case, the field that acts
on the surface charge of a conductor is

E1 =
σ
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and the force per unit area is then just the field times the surface charge
density:
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Since force per unit area is pressure, we can define the electrostatic pres-
sure that the charge exerts on the surface of a conductor as the magnitude
of the force per unit area
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where Eabove is the electric field on the outer surface of the conductor:
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A couple of examples of this pressure:
Example 1. Two large metal plates, each of area A are held a distance d

apart. If there is a charge Q on each plate, then the field due to each plate
is E = σ/2ε0, with σ = Q/A, pointing away from the plate on each side.
Between the plates, E = 0, while outside the plates, E = σ/ε0 pointing
away from the plates. The electrostatic pressure is therefore
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Note that the answer does not depend on d, provided that the linear di-
mensions of the plates are much larger than their separation, so that we can
regard them as ’infinite’ planes.

Example 2. A spherical conductor of radius R carries a total charge Q.
We can find the force of repulsion between two hemispheres of the sphere.
From symmetry, the electrostatic pressure is ε0

2 E
2 in a radial direction. To

find the total force between two hemispheres, we can integrate the z com-
ponent of the force per unit area (that is, the pressure) over one hemisphere
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to find the total force on it. The electric field is zero inside the sphere, and
Q

4πε0R2 just outside the sphere. Thus
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