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The electric potential is defined as

V (r)≡ 1
4πε0

ˆ
1

|r− r′|
ρ(r′)dr′ (1)

One of the properties of a conductor is that its surface is an equipotential;
that is, the potential is the same everywhere on the surface of (and inside) a
conductor. Although the calculation of the potential from the above formula
for some geometric shape of conductor could be very difficult, we can see
that if we change the charge density ρ by a constant factor everywhere, the
potential will change by the same factor. That is, the potential is effectively
proportional to the total charge.

The absolute value of the potential depends on the reference location we
use; as we’ve seen before, it’s traditional to choose V = 0 at infinity. How-
ever, the potential difference between two points does not depend on this
reference location (since it cancels out when taking the difference). Since
the potential itself is proportional to the total charge, so too is the potential
difference. Thus if we arrange two conductors in some configuration, then
there is a definite potential difference which is the same from any point on
one conductor to any point on the other conductor.

As such, it makes sense to define a quantity called the capacitance which
is the ratio of the charge on the conductors to the potential difference be-
tween them:

C ≡ Q
V

(2)

where Q is the amount of positive charge on one conductor (and −Q is the
amount of negative charge on the other conductor), and V is the potential
difference between the two conductors, taken as (positive) minus (negative),
so V is always positive. Thus C is always a positive quantity, and in SI units
its unit is the farad, or coulomb per volt.

The name ’capacitance’ can be thought of as the capacity of a system of
two conductors for holding charge. The larger the capacitance, the more
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charge is required to produce a given potential difference. To calculate the
capacitance we need to find an expression for the potential in terms of the
amount of charge stored on the conductors.

Example 1. The parallel plate capacitor. If we have two parallel flat
plates, each of area A and a distance d apart, what is the capacitance of
the system? If the area is large compared to the separation, then we can
approximate the field between the plates by σ/ε0, where σ is the surface
charge density: σ = Q/A. Since the field is therefore constant, the potential
is found from an integral.

V = −
ˆ

E ·dl (3)

=
Q

Aε0
d (4)

The capacitance is then

C =
Q
V

(5)

=
Aε0

d
(6)

Thus the capacitance increases if we increase the area of the plates, or if
we decrease the distance between them.

Example 2. If we now have two concentric conducting spheres with radii
a and b (a < b), and place a charge +Q on the inner sphere, we note that
the field between the spheres is due entirely to the inner sphere, and is

E =
1

4πε0

Q
r2 r̂ (7)

where a < r < b. The potential difference between the spheres is then found
from

V = −
ˆ

E ·dl (8)

= − Q
4πε0

ˆ b

a

dr
r2 (9)

=
Q

4πε0

(
1
a
− 1

b

)
(10)

=
Q

4πε0

b−a
ab

(11)
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The capacitance is

C =
Q
V

(12)

= 4πε0
ab

b−a
(13)

Note the rather curious fact that this calculation doesn’t depend at all on
how much charge is on the outer sphere, although it does depend on where
the outer sphere is (that is, on b). In fact, if the outer sphere goes off to
infinity, the capacitance tends to

C→ 4πε0a

Example 3. We have two concentric cylindrical conducting shells or radii
a and b. Find the capacitance per unit length. First, we can find the field
due to the inner cylinder. By symmetry, the field points radially outwards,
so we can use Gauss’s law to find it. If the radius of the cylinder is a and we
consider a length L then if we consider a Gaussian cylinder enclosing this
section, the total enclosed charge is 2πaLσ . If the Gaussian cylinder has
radius r its area (minus the end caps, which don’t contribute) is 2πrL so

˛
E ·da =

q
ε0

(14)

2πrLE =
2πaLσ

ε0
(15)

E =
aσ

rε0
(16)

The potential difference from R = a to R = b is therefore

V =
aσ

ε0

ˆ b

a

1
r

dr (17)

=
aσ

ε0
ln

b
a

(18)

In a unit length, the charge is Q = 2πaσ , so

V =
Q

2πε0
ln

b
a

(19)

and
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C =
Q
V

(20)

=
2πε0

ln(b/a)
(21)
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