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Experimentally, the dipole moment of an atom is proportional to the ap-

plied electric field (for small fields). Since the polarization of a dielectric is
due to individual atoms within the dielectric being given dipole moments,
it should come as no surprise that the polarization density P of a dielectric
is also proportional to the applied field. The relation is written as

P = ε0χeE (1)

where χe is the electric susceptibility. Due to the presence of the ε0, χe is
dimensionless.

Not all substances obey such a simple law, but for those that do, they are
called linear dielectrics.

If this condition holds, we get a simple relationship between the displace-
ment, the field and the polarization. We have

D = ε0E+P (2)
= ε0 (1+χe)E (3)

The quantity 1+ χe is called the dielectric constant for a material. The
entire proportionality constant is called the permittivity ε of the material:

ε = ε0 (1+χe) (4)

Since a vacuum cannot be polarized at all, χe = 0 for a vacuum, so that
ε = ε0 in that case. This is why ε0 is called the permittivity of free space.

As a simple example of how these relations can be used, suppose we have
a parallel plate capacitor whose plates are separated by a distance 2a. On
one plate there is a surface charge density of σ and on the other there is −σ .
Between the plates are two slabs of dielectric, each of thickness a. Slab 1
(next to the positive plate) has a dielectric constant of 2 and slab 2 has a
dielectric constant of 1.5.

We can begin by finding the displacement D. Using Gauss’s law for
displacement, we can build a little cylindrical Gaussian pillbox of radius r
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with one end in the positive plate and the other in slab 1. By symmetry D is
parallel to the axis of the cylinder so there are no contributions to D ·da from
the sides of the cylinder. The end of the cylinder inside the plate will have
D = 0 (since we’re inside a conductor), while the other end will contribute
πr2D. The charge enclosed by the cylinder is πr2σ so we get

ˆ
D ·da = Q (5)

πr2D = πr2
σ (6)

D = σ (7)

This result is independent of the dielectric, so it holds everywhere be-
tween the plates. If we assume the positive plate lies above the negative
one, we have D = −σ ẑ since the displacement vector points from positive
to negative.

From the relation above, we can find E. For the two slabs, we have

E1 =
1

ε0 (1+χe)1
D (8)

= − σ

2ε0
ẑ (9)

E2 = − σ

1.5ε0
ẑ (10)

The polarization within the two slabs can now be found from 1.

P1 = ε0(2−1)E1 (11)

= −σ

2
ẑ (12)

P2 = −σ

3
ẑ (13)

The potential difference between the plates is

V = E1a+E2a (14)

=
7
6

aσ

ε0
(15)

The bound charges resulting from the polarization can be found. Since
the polarization is uniform within each slab, there is no volume bound
charge since ∇ ·P = 0 everywhere. The surface bound charge is found from

σb = P · n̂ (16)
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Applying this at the boundary between the positive plate and slab 1, we
get σb = −σ/2. At the boundary between slabs 1 and 2, there is a bound
charge of +σ/2 on slab 1 and −σ/3 on slab 2 (for a net bound charge of
+σ/6 at the boundary). At the boundary between slab 2 and the negative
plate, we have +σ/3.

We can use these bound charges to check the values for the field found
above. Choosing a Gaussian cylinder with one end in the positive plate and
the other in slab 1, the enclosed charge is πr2 (σ −σ/2) which is equal to
ε0 times the surface integral of the field over the cylinder’s end cap which is
πr2E1. Thus E1 = σ/2ε0 (pointing downwards) as before. Doing the same
calculation for slab 2 we get E2 = 2σ/3ε0 as before.
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