MAGNETIC VECTOR POTENTIAL
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Reference: Griffiths, David J. (2007) Introduction to Electrodynamics,
3rd Edition; Prentice Hall - Problem 5.22.

The Biot-Savart law gives the magnetic field B in terms of the currents in
a volume:
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By straightforward calculation, we can show that
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Plugging this into the integral, we get
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The gradient operator operates on the unprimed coordinates only, so we
can rewrite the integrand as
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To see that this works, consider the general equation
—JXx VP =Vx(JO) (5)

where on both sides, the V operator operates only on @ and not on J. Look-
ing at each side separately and isolating the x component, we get
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where in the last line we can pull the components of J outside the deriva-

tives since it depends only on the primed coordinates. The same derivation
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obviously works for the y and z components as well. Therefore we can
rewrite the Biot-Savart law as
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The vector quantity A (r) is defined by
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and 1s known as the magnetic vector potential. This is a magnetic analog of
the electrostatic condition E = —V®, as we can write

B=VxA (11)
Being able to write B as a curl makes its divergence zero automatically.
However, we’ve defined A only by specifying what its curl is, and since
we need both the curl and the divergence to determine a vector field uniquely,
A is not uniquely specified by its derivation. Since all we require is that
B =V x A, we can add any vector field to A that has a zero curl. Since
the curl of any gradient is zero, we can write the most general form of the
vector potential as

_ Mo J(') 5,
A =2 | A vAG) (12

where A is any scalar function of position. Transforming the vector potential
in this way is known as a gauge transformation. A common choice is to
choose A so that V- A = 0, which can be done by requiring
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The quantity on the RHS is a scalar function of r, so this is an instance of
Poisson’s equation. For steady currents, we can actually work out the RHS.

First, note that
J')\ , 1
V() =10V (1 (9

= =J(r)-V <L> (15)
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where in the second line, we are now taking the derivative with respect to
the primed coordinates. We now get
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In the second line, we’ve integrated by parts. The integrated term is eval-
uated at infinity and is zero assuming that all currents are contained within
a finite volume and the second term is zero if currents are steady, since
V/-J(r') = 0. Thus V2\ = 0 everywhere. This is an instance of Laplace’s
equation, but since it applies over all space, if we require A to be finite at
infinity, the only solution is A = constant, which in turn implies VA = 0 so
we can in fact just write

A(r)= Ho J ()

3./
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With this choice of gauge, we can get another relation for A by using the
vector identity

VxB=VxVxA=V(V-A)-V?A (20)
Applying V- A = 0 and quoting Ampere’s law, we get

VA = —poJ (21)

This is another instance of Poisson’s equation, this time with a separate
equation for each of the three components.

Finding the vector potential involves working out similar integrals to
those for finding B from the Biot-Savart law. As an example, suppose we
have a wire segment extending from zj to 2> on the z axis and carrying a
steady current /. The form of |19|for a linear current is
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We have
|r—r’}:\/x2—|—y2+(z—z’)2 (23)

Doing the integral we get
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To check that this is correct, we can calculate

B=VxA (26)
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where
7“@5\/152+y2+(z—zi)2 (28)

To compare this with eqn 5.35 in Griffiths, we need to consider a particu-
lar field point r, so suppose we look at r = [0, s,0]. Then we can define the
angles 6; to be the angle between a line from r to z; and the xy plane (these
are the same angles Griffiths uses in his example 5.5).
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From the diagram, we see that
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For the point r we get
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(The sign is opposite to Griffiths’ eqn 5.35 because of the orientation of
the axes. My z axis points into the page, so the magnetic field points out of
the page, in agreement with Griffiths.)

Pingback:
Pingback:
Pingback:
Pingback:
Pingback:
Pingback:
Pingback:
Pingback:
Pingback:
Pingback:
Pingback:
Pingback:
Pingback:
Pingback:
Pingback:
Pingback:
Pingback:
Pingback:

PINGBACKS

Magnetic vector potential and current

Magnetic vector potential of constant field
Magnetic vector potential of an infinite wire
Magnetic vector potential: div, curl and Laplacian
Magnetic scalar potential

Magnetic field of rotating sphere of charge
Divergenceless vector field as a curl

Magnetic dipole

Faraday field and magnetic vector potential
Magnetic vector potential from magnetic field
Magnetic vector potential as the curl of another function
Average magnetic field within a sphere
Magnetization: bound currents

Mutual inductance

Energy in a magnetic field

Faraday field and magnetic vector potential
Coulomb and Lorenz gauges

Electromagnetic field tensor: four-potential


http://physicspages.com/pdf/Griffiths EM/Griffiths Problems 05.23.pdf
http://physicspages.com/pdf/Griffiths EM/Griffiths Problems 05.24.pdf
http://physicspages.com/pdf/Griffiths EM/Griffiths Problems 05.25.pdf
http://physicspages.com/pdf/Griffiths EM/Griffiths Problems 05.27.pdf
http://physicspages.com/pdf/Griffiths EM/Griffiths Problems 05.28.pdf
http://physicspages.com/pdf/Griffiths EM/Griffiths Problems 05.29.pdf
http://physicspages.com/pdf/Griffiths EM/Griffiths Problems 05.30.pdf
http://physicspages.com/pdf/Griffiths EM/Griffiths Problems 05.33.pdf
http://physicspages.com/pdf/Griffiths EM/Griffiths Problems 05.50a.pdf
http://physicspages.com/pdf/Griffiths EM/Griffiths Problems 05.51.pdf
http://physicspages.com/pdf/Griffiths EM/Griffiths Problems 05.53.pdf
http://physicspages.com/pdf/Griffiths EM/Griffiths Problems 05.57.pdf
http://physicspages.com/pdf/Griffiths EM/Griffiths Problems 06.07-09.pdf
http://physicspages.com/pdf/Griffiths EM/Griffiths Problems 07.20.pdf
http://physicspages.com/pdf/Griffiths EM/Griffiths Problems 07.26.pdf
http://physicspages.com/pdf/Griffiths EM/Griffiths Problems 07.47.pdf
http://physicspages.com/pdf/Griffiths EM/Griffiths Problems 10.06.pdf
http://physicspages.com/pdf/Moore/Moore Problems 07.03.pdf

	Pingbacks

