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The Biot-Savart law gives the magnetic field B in terms of the currents in

a volume:

B(r) =
µ0

4π

ˆ
V

J(r′)× (r− r′)
|r− r′|3

d3r′ (1)

By straightforward calculation, we can show that

r− r′

|r− r′|3
=−∇

1
|r− r′|

(2)

Plugging this into the integral, we get

B(r) =−µ0

4π

ˆ
V

J
(
r′
)
×∇

1
|r− r′|

d3r′ (3)

The gradient operator operates on the unprimed coordinates only, so we
can rewrite the integrand as

−J
(
r′
)
×∇

1
|r− r′|

= ∇× J(r′)
|r− r′|

(4)

To see that this works, consider the general equation

−J×∇Φ = ∇× (JΦ) (5)

where on both sides, the ∇ operator operates only on Φ and not on J. Look-
ing at each side separately and isolating the x component, we get

[−J×∇Φ]x = −Jy∂zΦ+Jz∂yΦ (6)
[∇× (JΦ)]x = ∂y (JzΦ)−∂z (JyΦ) (7)

= Jz∂yΦ−Jy∂zΦ (8)

where in the last line we can pull the components of J outside the deriva-
tives since it depends only on the primed coordinates. The same derivation
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obviously works for the y and z components as well. Therefore we can
rewrite the Biot-Savart law as

B(r) =
µ0

4π
∇×
ˆ
V

J(r′)
|r− r′|

d3r′ (9)

The vector quantity A(r) is defined by

A(r) =
µ0

4π

ˆ
V

J(r′)
|r− r′|

d3r′ (10)

and is known as the magnetic vector potential. This is a magnetic analog of
the electrostatic condition E =−∇Φ, as we can write

B = ∇×A (11)
Being able to write B as a curl makes its divergence zero automatically.
However, we’ve defined A only by specifying what its curl is, and since

we need both the curl and the divergence to determine a vector field uniquely,
A is not uniquely specified by its derivation. Since all we require is that
B = ∇×A, we can add any vector field to A that has a zero curl. Since
the curl of any gradient is zero, we can write the most general form of the
vector potential as

A(r) =
µ0

4π

ˆ
V

J(r′)
|r− r′|

d3r′+∇λ(r) (12)

where λ is any scalar function of position. Transforming the vector potential
in this way is known as a gauge transformation. A common choice is to
choose λ so that ∇ ·A = 0, which can be done by requiring

∇
2λ=−µ0

4π
∇ ·
ˆ
V

J(r′)
|r− r′|

d3r′ (13)

The quantity on the RHS is a scalar function of r, so this is an instance of
Poisson’s equation. For steady currents, we can actually work out the RHS.
First, note that

∇ ·
(

J(r′)
|r− r′|

)
= J

(
r′
)
·∇
(

1
|r− r′|

)
(14)

= −J
(
r′
)
·∇′
(

1
|r− r′|

)
(15)

where in the second line, we are now taking the derivative with respect to
the primed coordinates. We now get
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∇ ·
ˆ
V

J(r′)
|r− r′|

d3r′ =−
ˆ
V

J
(
r′
)
·∇′
(

1
|r− r′|

)
d3r′ (16)

=− J
|r− r′|

∣∣∣∣
∞

+

ˆ
V

∇′ ·J(r′)
|r− r′|

d3r′ (17)

= 0+0 (18)

In the second line, we’ve integrated by parts. The integrated term is eval-
uated at infinity and is zero assuming that all currents are contained within
a finite volume and the second term is zero if currents are steady, since
∇′ ·J(r′) = 0. Thus ∇2λ = 0 everywhere. This is an instance of Laplace’s
equation, but since it applies over all space, if we require λ to be finite at
infinity, the only solution is λ= constant, which in turn implies ∇λ= 0 so
we can in fact just write

A(r) =
µ0

4π

ˆ
V

J(r′)
|r− r′|

d3r′ (19)

With this choice of gauge, we can get another relation for A by using the
vector identity

∇×B = ∇×∇×A = ∇(∇ ·A)−∇
2A (20)

Applying ∇ ·A = 0 and quoting Ampère’s law, we get

∇
2A =−µ0J (21)

This is another instance of Poisson’s equation, this time with a separate
equation for each of the three components.

Finding the vector potential involves working out similar integrals to
those for finding B from the Biot-Savart law. As an example, suppose we
have a wire segment extending from z1 to z2 on the z axis and carrying a
steady current I . The form of 19 for a linear current is

A(r) =
µ0I

4π

ˆ
dl′

|r− r′|
(22)

We have

∣∣r− r′
∣∣=√x2 +y2 +(z− z′)2 (23)

Doing the integral we get
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A =
µ0I

4π

ˆ z2

z1

dz′√
x2 +y2 +(z− z′)2

(24)

=
µ0I

4π
ln


√
x2 +y2 +(z− z2)

2 + z2− z√
x2 +y2 +(z− z1)

2 + z1− z

 ẑ (25)

To check that this is correct, we can calculate

B = ∇×A (26)

=

 y

r2
2

(
z2−z
r2

+1
) − y

r2
1

(
z1−z
r1

+1
)
 x̂+

 x

r2
1

(
z1−z
r1

+1
) − x

r2
2

(
z2−z
r2

+1
)
 ŷ

(27)

where

ri ≡
√
x2 +y2 +(z− zi)2 (28)

To compare this with eqn 5.35 in Griffiths, we need to consider a particu-
lar field point r, so suppose we look at r = [0, s,0]. Then we can define the
angles θi to be the angle between a line from r to zi and the xy plane (these
are the same angles Griffiths uses in his example 5.5).

From the diagram, we see that

zi− z
ri

= sinθi (29)

s

ri
= cosθi (30)
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For the point r we get

B =
µ0I

4π

[
s

r2
2 (sinθ2 +1)

− s

r2
1 (sinθ1 +1)

]
x̂ (31)

=
µ0I

4π

[
cos2 θ2

s(sinθ2 +1)
− cos2 θ1

s(sinθ1 +1)

]
x̂ (32)

=
µ0I

4π

[
1− sin2 θ2

s(sinθ2 +1)
− 1− sin2 θ1

s(sinθ1 +1)

]
x̂ (33)

=
µ0I

4π

[
(1− sinθ2)(1+ sinθ2)

s(sinθ2 +1)
− (1− sinθ1)(1+ sinθ1)

s(sinθ1 +1)

]
x̂ (34)

=
µ0I

4πs
(sinθ1− sinθ2) x̂ (35)

(The sign is opposite to Griffiths’ eqn 5.35 because of the orientation of
the axes. My x axis points into the page, so the magnetic field points out of
the page, in agreement with Griffiths.)
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