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A while back, we worked out the behaviour of the electric field and po-

tential at a layer of surface charge. We can do a similar analysis for the
magnetic field and its behaviour as we cross a surface current.

Suppose we have a surface with a surface current K. At a local point,
let’s say this current flows in the +x direction. Consider a small patch of
area and build a little pillbox that straddles the surface at this area. If we
make the thickness of the box infinitesimally thin, then a surface integral is
essentially over the two sides of the box on either side of the current. Since
∇ ·B = 0, Gauss’s law says that

ˆ
V

∇ ·Bd3r =
ˆ
A

B ·da = 0 (1)

Now B ·da =B⊥da so the second integral says that
ˆ
A

B ·da =
(
Babove
⊥ −Bbelow

⊥

)
A= 0 (2)

Therefore, the normal component of B is continuous across a surface cur-
rent.

For the parallel component, consider first the component of B parallel to
the surface but perpendicular to the current. We can define a little loop that
straddles the surface, where the area enclosed by the loop is perpendicular
to the current. If we make the vertical sides of the loop infinitesimal and the
horizontal sides of length 1, then we can use Stokes’s theorem to say

˛
B ·dl =Babove

‖ −Bbelow
‖ = µ0I = µ0K (3)

Finally, if we take a loop perpendicular to the surface but parallel to the
current, then the loop encloses zero current so

¸
B ·dl = 0 and this compo-

nent of the field is continuous.
Thus the only component of B that has a discontinuity is the one parallel

to the surface but perpendicular to the current. That is, the discontinuity is
perpendicular both to the normal n̂ to the surface and the current K, so the
difference must be expressible as the cross product of these two vectors:
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Babove−Bbelow = µ0K× n̂ (4)
To get the direction of the discontinuity, suppose we look in the +x di-

rection (that is, in the direction of the current). Then the field above the
current points to the right (that is, in the −y direction) and below it points
to the left (+y direction). Thus the difference Babove−Bbelow points to the
right. This works out properly if K points in the +x direction and n̂ points
in the +z direction.

As for the vector potential, assuming ∇ ·A = 0 means that A⊥ is contin-
uous (using the same argument as above). Since B = ∇×A, we can again
use Stokes’s theorem to integrate A around a loop straddling the surface:

˛
A ·dl =

ˆ
B ·da (5)

where the second integral is over the area enclosed by the loop. Unlike the
integral

¸
B ·dl above, though, the flux of B enclosed by the loop diminishes

to zero as we make the loop thinner and thinner. There is no infinitesimally
thin sheet of magnetic field that is always enclosed by the loop as there
was in the case of enclosed current. Thus in the limit,

¸
A · dl = 0 for

any orientation of the loop across the surface, and all components of A are
continuous across a surface current.

The derivative of A does have a discontinuity however. To see this, sup-
pose we set up a coordinate system with ẑ the normal to the area patch and
ŷ the direction of the current K. Then

∆B = Babove−Bbelow = µ0K× n̂ = µ0Kx̂ (6)
Writing out ∆B = ∇× (∆A) we have

∆Bx = ∂y (∆Az)−∂z (∆Ay) = µ0K (7)
∆By = ∂z (∆Ax)−∂x (∆Az) = 0 (8)
∆Bz = ∂x (∆Ay)−∂y (∆Ax) = 0 (9)

Since A is continuous across the surface, the derivatives in directions
parallel to the surface (that is, x and y) will be the same on both sides, so x
and y derivatives of ∆A will all be zero. This gives us

∆Bx = ∂z (∆Ay) =−µ0K (10)
∆By = ∂z (∆Ax) = 0 (11)

To get the third derivative we use ∇ ·A = 0, which gives
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∂z (∆Az) =−∂x (∆Ax)−∂y (∆Ay) = 0 (12)
Therefore, the y component of the normal derivative of A has a disconti-

nuity:

∂z (∆A) =−µ0Kŷ (13)
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