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We can now revisit the problem of a charged particle in a cyclotron field.

Suppose we start with a charged particle of mass m and charge q at rest a
distanceR from the axis of the cyclotron, and we want to increase the speed
of the particle in its circular orbit while keeping it at the same radius (such
a device is called a betatron). We can do this by varying the magnetic field
B(t) such that the cyclotron relation is always satisfied:

qvB =
mv2

R
(1)

B =
mv

qR
(2)

Taking the time derivative, we get

Ḃ =
mv̇

qR
(3)

The changing magnetic field induces a circumferential electric field E,
and since this field is parallel to the particle’s direction of motion it will act
as the force that accelerates the particle. From Newton’s law, F =mv̇= qE,
so

Ḃ =
E

R
(4)

If we assume the cyclotron has cylindrical symmetry, then we can inte-
grate this equation along the particle’s orbit, along which both fields are
constant in magnitude. That is

˛
Ḃcd` =

˛
E

R
d` (5)

˛
Ed` = R

˛
Ḃcd` (6)

= 2πR2Ḃc (7)
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This equation applies on the circumference of the orbit only (not in the
interior of the orbit), so we’ve added a suffix c toBc to emphasize this point.

From Faraday’s law in integral form, we have also that the integral of the
electric field is given by the change in flux:

˛
Ed` = −dΦ

dt
(8)

= −
ˆ

Ḃ ·da (9)

where now we are integrating over all points within the orbit.
If we start with the particle at rest in zero field, then we have

2πR2Ḃc =−
ˆ

Ḃ ·da = πR2 ˙̄B (10)

where B̄ is the average field across the orbit.
A word about the signs here. Suppose the magnetic field points in the −z

direction (as shown in Fig. 7.52 in Griffiths), and we take the area vector
to point in the +z direction. Further, if the magnetic field is increasing in
magnitude, then Ḃ points towards −z as well. Thus Ḃ · da < 0, giving the
sign shown.

We can integrate both sides to some time t to get

Ḃc (t) =
1
2
B̄ (t) (11)

Thus we can speed up (or slow down, by decreasing the field) the particle
by keeping the average field equal to twice the field at the radius of the orbit.
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