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The electric field inside a resistor with a constant cross-section is given

in Griffiths’s Example 7.1 as

E =
Iρ

A
ẑ (1)

where in this case ρ is the resistivity (not the charge density!), I is the
current and A is the cross-sectional area of the resistor. If we consider the
simple case where the cross section is circular and make the resistor very
long (so we can call it a wire with radius a), then

E =
Iρ

πa2 ẑ (2)

Surprisingly, the problem of finding the field outside the wire is not com-
pletely solved. If we assume that the current returns through a supercon-
ducting coaxial cylinder of radius b around the wire, and that the magnetic
field is constant in time, so that ∇×E = 0 and thus E =−∇V , then we can
apply Laplace’s equation in cylindrical coordinates to find the potential. In
order to solve it, we need boundary conditions. Since the coaxial cylinder
is a perfect conductor, V = 0 there. On the surface of the inner wire, we
have

V (a,z) =−Iρz
πa2 (3)

The problem is, what is V in between the two cylinders? The solution
we derived earlier was for the case where V was independent of z:

V (r,φ)=A lnr+B+
∞

∑
n=1

rn (An sinnφ+Bn cosnφ)+
−1

∑
n=−∞

rn (Cn sinnφ+Dn cosnφ)

(4)
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However, in the special case where V (r,z) = zf (r), this solution also
works for finding f (since using separation of variables on all three cylin-
drical variables separates the z from the rest of V ). Since there is no φ
dependence, both sums disappear and we are left with

V (r = b) = 0 = A lnb+B (5)
B = −A lnb (6)

On the wire:

V (a) = −Iρz
πa2 (7)

= A lna+B (8)

= A ln
a

b
(9)

A = − Iρz

πa2 ln(a/b)
(10)

So

V (r,z) =−Iρz ln(r/b)
πa2 ln(a/b)

(11)

The field is then

E = −∇V (12)

=
Iρ

πa2 ln(a/b)

[z
r

r̂+ ln
r

b
ẑ
]

(13)

The surface charge density on the wire is found from the difference in
radial components of the field. Inside the wire there is no radial component,
so

σ = ε0∆Er =
Iρε0z

πa3 ln(a/b)
(14)

As Griffiths remarks, the results for the field and surface charge are ’pe-
culiar’ (I would say ’wrong’) since they depend on z, which shouldn’t be
the case for an infinite wire with no variation along its length. It is surely
impossible since the results depend on where we set the origin, which is
completely arbitrary.
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