MAXWELL STRESS TENSOR

Link to: [physicspages home page.](http://physicspages.com)

To leave a comment or report an error, please use the auxiliary blog.

Post date: 9 Jun 2014.

Here we’ll look at a purely classical, non-relativistic form of the tensor in electromagnetism. In doing so, we’ll look only at the spatial components of the tensor, so it becomes a 3×3 matrix.

The derivation starts with a calculation of the total force due to electromagnetic fields on the charges and currents within some volume V. From the Lorentz force law, we have

$$ F = \hat{V} \rho (E + v \times B) \, d^3r \tag{1} $$

$$ = \hat{V} (\rho E + J \times B) \, d^3r \tag{2} $$

We can think of the integrand as a force density, or force per unit volume f:

$$ f \equiv \rho E + J \times B \tag{3} $$

We can express this entirely in terms of fields by using Maxwell’s equations:

$$ \rho = \varepsilon_0 \nabla \cdot E \tag{4} $$

$$ J = \frac{1}{\mu_0} \nabla \times B - \varepsilon_0 \frac{\partial E}{\partial t} \tag{5} $$

So we get

$$ f = (\varepsilon_0 \nabla \cdot E) E + \left[\frac{1}{\mu_0} \nabla \times B - \varepsilon_0 \frac{\partial E}{\partial t} \right] \times B \tag{6} $$

We now need to do a bit of vector calculus gymnastics. From the product rule

$$ \frac{\partial}{\partial t} (E \times B) = \frac{\partial E}{\partial t} \times B + E \times \frac{\partial B}{\partial t} \tag{7} $$
and from Faraday’s law

\[\frac{\partial \mathbf{B}}{\partial t} = -\nabla \times \mathbf{E} \]

(8)

Combining these two we get

\[\frac{\partial \mathbf{E}}{\partial t} \times \mathbf{B} = \frac{\partial}{\partial t} (\mathbf{E} \times \mathbf{B}) - \mathbf{E} \times \frac{\partial \mathbf{B}}{\partial t} \]

(9)

\[= \frac{\partial}{\partial t} (\mathbf{E} \times \mathbf{B}) + \mathbf{E} \times (\nabla \times \mathbf{E}) \]

(10)

We can insert this into (6) and while we’re at it, we can add on a term \(\frac{1}{\mu_0} (\nabla \cdot \mathbf{B}) \mathbf{B} \). This is always zero because \(\nabla \cdot \mathbf{B} = 0 \), but it gives the equation a symmetry that will be useful in a minute. We get for the force density:

\[\mathbf{f} = \varepsilon_0 (\nabla \cdot \mathbf{E}) \mathbf{E} + \frac{1}{\mu_0} (\nabla \cdot \mathbf{B}) \mathbf{B} + \frac{1}{\mu_0} (\nabla \times \mathbf{B}) \times \mathbf{B} - \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t} \times \mathbf{B} \]

(11)

\[= \varepsilon_0 (\nabla \cdot \mathbf{E}) \mathbf{E} + \frac{1}{\mu_0} (\nabla \cdot \mathbf{B}) \mathbf{B} + \frac{1}{\mu_0} (\nabla \times \mathbf{B}) \times \mathbf{B} - \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t} \times \mathbf{B} \]

(12)

\[\varepsilon_0 \frac{\partial}{\partial t} (\mathbf{E} \times \mathbf{B}) - \varepsilon_0 \mathbf{E} \times (\nabla \times \mathbf{E}) \]

(13)

Now another identity from vector calculus says

\[\nabla (\mathbf{A} \cdot \mathbf{B}) = \mathbf{A} \times (\nabla \times \mathbf{B}) + \mathbf{B} \times (\nabla \times \mathbf{A}) + (\mathbf{A} \cdot \nabla) \mathbf{B} + (\mathbf{B} \cdot \nabla) \mathbf{A} \]

(14)

If \(\mathbf{A} = \mathbf{B} = \mathbf{E} \), we get

\[\nabla (E^2) = 2 \mathbf{E} \times (\nabla \times \mathbf{E}) + 2 (\mathbf{E} \cdot \nabla) \mathbf{E} \]

(15)

so

\[\mathbf{E} \times (\nabla \times \mathbf{E}) = \frac{1}{2} \nabla (E^2) - (\mathbf{E} \cdot \nabla) \mathbf{E} \]

(16)

\[\mathbf{B} \times (\nabla \times \mathbf{B}) = \frac{1}{2} \nabla (B^2) - (\mathbf{B} \cdot \nabla) \mathbf{B} \]

(17)

Putting this into (12) we get
\begin{align*}
f &= \varepsilon_0 (\nabla \cdot E) E + \frac{1}{\mu_0} (\nabla \cdot B) B - \varepsilon_0 \frac{\partial}{\partial t} (E \times B) - \\
\frac{1}{\mu_0} B \times (\nabla \times B) - \varepsilon_0 E \times (\nabla \times E) \\
&= \varepsilon_0 (\nabla \cdot E) E + \frac{1}{\mu_0} (\nabla \cdot B) B - \varepsilon_0 \frac{\partial}{\partial t} (E \times B) - \\
\frac{1}{2} \nabla \left(\varepsilon_0 E^2 + \frac{1}{\mu_0} B^2 \right) + \varepsilon_0 (E \cdot \nabla) E + \frac{1}{\mu_0} (B \cdot \nabla) B \\
&= \varepsilon_0 [(\nabla \cdot E) E + (E \cdot \nabla) E] + \frac{1}{\mu_0} [(\nabla \cdot B) B + (B \cdot \nabla) B] - \\
\frac{1}{2} \nabla \left(\varepsilon_0 E^2 + \frac{1}{\mu_0} B^2 \right) - \varepsilon_0 \frac{\partial}{\partial t} (E \times B)
\end{align*}

It might not seem that we’re making any progress, since the equations just get longer with each alteration. However, we can now introduce the Maxwell stress tensor \(\mathbf{T} \) which is a 3 \times 3 matrix with components defined by

\[T_{ij} \equiv \varepsilon_0 \left(E_i E_j - \frac{1}{2} \delta_{ij} E^2 \right) + \frac{1}{\mu_0} \left(B_i B_j - \frac{1}{2} \delta_{ij} B^2 \right) \]

Note that the tensor is symmetric: \(T_{ij} = T_{ji} \). If we define the scalar product of the tensor with an ordinary vector to be another vector:

\[[\mathbf{a} \cdot \mathbf{T}]_j = \sum_i a_i T_{ij} \]

where the subscript \(j \) indicates the \(j \)th component of the resulting vector, then the divergence is
\[
\left[\nabla \cdot \mathbf{T} \right]_j = \sum_i \partial_i T_{ij} \quad (23)
\]
\[
= \epsilon_0 \sum_i \left((\partial_i E_i) E_j + E_i (\partial_i E_j) - \frac{1}{2} \delta_{ij} \partial_i E^2 \right) + \quad (24)
\]
\[
= \frac{1}{\mu_0} \sum_i \left((\partial_i B_i) B_j + B_i (\partial_i B_j) - \frac{1}{2} \delta_{ij} \partial_i B^2 \right)
\]
\[
= \epsilon_0 \left((\nabla \cdot \mathbf{E}) E_j + (\mathbf{E} \cdot \nabla) E_j - \frac{1}{2} \partial_j E^2 \right) + \quad (25)
\]
\[
\frac{1}{\mu_0} \left((\nabla \cdot \mathbf{B}) B_j + (\mathbf{B} \cdot \nabla) B_j - \frac{1}{2} \partial_j B^2 \right)
\]

Comparing this with 20, we see that we can write \mathbf{f} in terms of \mathbf{T} and the Poynting vector as

\[
\mathbf{f} = \nabla \cdot \mathbf{T} - \epsilon_0 \mu_0 \frac{\partial \mathbf{S}}{\partial t} \quad (26)
\]

The total force on the volume is then

\[
\mathbf{F} = \int_V \mathbf{f} \, d^3 \mathbf{r} \quad (27)
\]
\[
= \int_V \left(\nabla \cdot \mathbf{T} - \epsilon_0 \mu_0 \frac{\partial \mathbf{S}}{\partial t} \right) \, d^3 \mathbf{r} \quad (28)
\]

From the formula $[23]$ for the divergence, we can see that the vector resulting from the divergence has as its components the divergences of each column of \mathbf{T}. Therefore we can apply the divergence theorem to the first term in the integrand to get

\[
\mathbf{F} = \int_S \mathbf{T} \cdot d\mathbf{a} - \epsilon_0 \mu_0 \frac{\partial}{\partial t} \int_V \mathbf{S} \, d^3 \mathbf{r} \quad (29)
\]

where S is any surface that encloses only the charges and currents within V.

Example. We can revisit the problem of finding the magnetic force between the two halves of a spherical shell of surface charge density σ rotating with angular velocity $\omega = \omega \hat{z}$. In our earlier solution we used the Biot-Savart law and integrated over each differential ring in the rotating sphere. Using the stress tensor, we can integrate over any volume that encloses the upper half of the sphere, so we can choose the half space consisting of all space
above the xy plane (we’re assuming that the centre of the sphere is at the origin, so the xy plane contains the sphere’s equator). Since the distribution of charges and currents is finite, all fields will go to zero at infinity, so we need to integrate only over the xy plane.

We saw earlier that the magnetic field inside and outside the sphere is

$$B = \begin{cases} \frac{2\mu_0 R \omega \sigma}{3} \left(\cos \theta \hat{r} - \sin \theta \hat{\theta} \right) & r < R \\ \frac{\mu_0 R^4 \omega \sigma}{3} \frac{1}{r^3} \left(2 \cos \theta \hat{r} + \sin \theta \hat{\theta} \right) & r > R \end{cases}$$

(30)

In the xy plane, $\theta = \pi/2$ so the field is

$$B = \begin{cases} \frac{2\mu_0 R \omega \sigma}{3} \hat{z} & r < R \\ \frac{\mu_0 R^4 \omega \sigma}{3} \frac{1}{r^3} \hat{z} & r > R \end{cases}$$

(31)

Since we’re interested only in the magnetic field, we can ignore E here, although there is a repulsive force between the two hemispheres due to the electric field as well. Also, as the currents are steady, $\partial S / \partial t = 0$.

From the symmetry of the problem, the force is in the z direction, so we need to work out only $\left[\mathbf{T} \cdot d\mathbf{a} \right]_z$. We get $T_{xz} = T_{yz} = 0$ because $B_x = B_y = 0$ on the xy plane, so we’re left with just T_{zz}:

$$T_{zz} = \frac{1}{2\mu_0} B_z^2 = \begin{cases} \frac{2}{9} \mu_0 \sigma^2 \omega^2 R^2 & r < R \\ \frac{1}{18} \mu_0 \sigma^2 \omega^2 R^8 & r > R \end{cases}$$

(32)

The total force is then (the minus sign is because $T_{zz} > 0$ and $d\mathbf{a}$ points towards $-z$):

$$\mathbf{F} = \int_S \mathbf{T} \cdot d\mathbf{a}$$

(33)

$$= -\hat{z} \left[\frac{2}{9} \mu_0 \sigma^2 \omega^2 R^2 2\pi \int_0^R r \, dr + \frac{2\pi}{18} \mu_0 \sigma^2 \omega^2 R^8 \int_R^\infty \frac{r \, dr}{r^6} \right]$$

(34)

$$= -\hat{z} \left(\frac{2\pi}{9} \mu_0 \sigma^2 \omega^2 R^4 + \frac{\pi}{36} \mu_0 \sigma^2 \omega^2 R^4 \right)$$

(35)

$$= -\frac{\pi}{4} \mu_0 \sigma^2 \omega^2 R^4 \hat{z}$$

(36)

This agrees with the result we got earlier using the Biot-Savart law.

Pingbacks

Pingback: Maxwell stress tensor: force between two charges
Pingback: Momentum in electromagnetic fields
Pingback: Maxwell stress tensor and electromagnetic waves