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For a one dimensional wave (on a string, say) suppose we now place a

boundary at the point z = 0. For a string, this could be a point at which one
string is joined with another string of a different mass per unit length. If we
send a wave down the string from large negative z, when this wave reaches
z = 0, there will be a reflected wave that returns towards negative z and a
transmitted wave that proceeds beyond z = 0 towards positive z. We can
get some idea of the nature of these reflected and transmitted waves if we
impose some boundary conditions at the point z = 0.

First, we require the wave function f to be continuous, for the simple
reason that there is no break in the string at z = 0. The second boundary
condition requires that the derivative ∂ f/∂ z is also continuous. The reason
for this is a bit more subtle. Assuming there is no point mass (such as a
knot) at the joining position, if the tangent to the string at that point were
not continuous, then the second derivative would be infinite, meaning that
there would be an infinite force at that point.

To see how the incident, reflected and transmitted waves are related, sup-
pose we have an incident wave I(z−v1t), a reflected wave R(z+ v1t) and a
transmitted wave T (x− v2t), where I and T are moving to the right, with I
defined for z < 0 and T for z > 0, and R moving to the left for z < 0.

The continuity of the wave function at z = 0 gives us

(0.1) I (−v1t)+R(v1t) = T (−v2t)

The continuity of the derivative, if applied directly, just gives the same
equation with each function replaced by its derivative, so doesn’t help much:

(0.2)
∂ I
∂ z

∣∣∣∣
z=0−

+
∂R
∂ z

∣∣∣∣
z=0−

=
∂T
∂ z

∣∣∣∣
z=0+

However, if we consider the original definition of a derivative as a limit,
we can make some progress. Consider first the derivative of the incident
wave just below z = 0, at time t = 0:
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(0.3)
∂ I
∂ z

∣∣∣∣
z=0−

= lim
∆z→0

I (0)− I (−∆z)
∆z

The wave amplitude at the point (z, t) = (−∆z,0) will be at z = 0 after it
travels the distance ∆z, which takes a time t = ∆z/v1.

By a similar argument, the derivative of the reflected wave is

(0.4)
∂R
∂ z

∣∣∣∣
z=0−

= lim
∆z→0

R(0)−R(−∆z)
∆z

This time, the wave amplitude at (−∆z,0) was at z= 0 at time t =−∆z/v1
since this wave is travelling to the left. Finally, for the transmitted wave

(0.5)
∂T
∂ z

∣∣∣∣
z=0+

= lim
∆z→0

T (∆z)−T (0)
∆z

since this wave is defined for z > 0. The wave amplitude at (∆z,0) was at
z = 0 at time t =−∆z/v2 since the transmitted wave is travelling to the right
with speed v2.

We can now use the continuity condition 0.1 to eliminate either R or T
from the limits. Start by eliminating R by evaluating everything at time
t =−∆z/v1:

(0.6)

lim
∆z→0

R(0)−R(−∆z)
∆z

= lim
∆z→0

1
∆z

[
T (0)− I (0)−

(
T
(

v2

v1
∆z

)
− I (∆z)

)]
Now we can insert this into the continuity equation for derivatives 0.2,

and we’ll leave off the limit and 1/∆z to simplify the notation:

I (0)− I (−∆z)+T (0)− I (0)−
(

T
(

v2

v1
∆z

)
− I (∆z)

)
= T (∆z)−T (0)

(0.7)

(I (0)− I (−∆z))+(I (∆z)− I (0)) =
(

T
(

v2

v1
∆z

)
−T (0)

)
+(T (∆z)−T (0))

(0.8)

Restoring the limit and 1/∆z we get

2
∂ I
∂ z

=

(
v2

v1
+1

)
∂T
∂ z

(0.9)
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This condition is strictly true only at z = 0, but it must be true for all
times. We can convert the derivatives into time derivatives by noting that
since I = I (z− v1t) we have

(0.10)
∂ I
∂ z

=− 1
v1

∂ I
∂ t

Similarly for R and T :

∂T
∂ z

= − 1
v2

∂T
∂ t

(0.11)

∂R
∂ z

=
1
v1

∂R
∂ t

(0.12)

Returning to 0.9 we get

− 2
v1

∂ I
∂ t

= − 1
v2

(
v2

v1
+1

)
∂T
∂ t

(0.13)

∂T
∂ t

=
2v2

v1 + v2

∂ I
∂ t

(0.14)

At z = 0, we can integrate with respect to time to get

(0.15) T (−v2t) =
2v2

v1 + v2
I (−v1t)+KT

where KT is a constant of integration. Although I, T and R are functions
of both z and t, they are all actually functions of only one variable, since
z and t must always occur in the combination z± v1,2t. Thus what 0.15
is saying is that, if we have the incident wave in the form I (u), then the
transmitted wave has the form

(0.16) T
(

v2

v1
u
)
=

2v2

v1 + v2
I (u)+KT

or, conversely

(0.17) T (u) =
2v2

v1 + v2
I
(

v2

v1
u
)
+KT

For T (u), u = z− v2t for z ≥ 0 (and all times t), while for I
(

v2
v1

u
)

, u =

z− v1t for z≤ 0. If we pick a particular numerical value for u, say 42, then
we can write
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T (zT − v2tT ) =
2v2

v1 + v2
I
(

v2

v1
(zI− v1tI)

)
+KT(0.18)

T (42) =
2v2

v1 + v2
I
(

42
v2

v1

)
+KT(0.19)

and this equation is valid for all values of z and t such that

zT − v2tT = 42 (z≥ 0)(0.20)
zI− v1tI = 42 (z≤ 0)(0.21)

That is, the values of zT and zI need not be equal, and neither must tT = tI .
All that matters is that zT − v2tT = zI− v1tI .

For the reflected wave, we eliminate T using 0.1 at time t =−∆z/v2 :

(0.22)

lim
∆z→0

T (∆z)−T (0)
∆z

= lim
∆z→0

1
∆z

[
I
(

v1

v2
∆z

)
+R

(
−v1

v2
∆z

)
− I (0)−R(0)

]
Substitute into 0.2, again without the limit and 1/∆z to simplify the no-

tation:

I (0)− I (−∆z)+R(0)−R(−∆z) = I
(

v1

v2
∆z

)
+R

(
−v1

v2
∆z

)
− I (0)−R(0)

(0.23)

(I (0)− I (−∆z))−
(

I
(

v1

v2
∆z

)
− I (0)

)
=−

(
R(0)−R

(
−v1

v2
∆z

))
− (R(0)−R(−∆z))

(0.24)

Restoring the limit and 1/∆z we get(
1− v1

v2

)
∂ I
∂ z

= −
(

1+
v1

v2

)
∂R
∂ z

(0.25)

− 1
v1

(
1− v1

v2

)
∂ I
∂ t

= − 1
v1

(
1+

v1

v2

)
∂R
∂ t

(0.26)

R(+v1t) =
v2− v1

v1 + v2
I (−v1t)(0.27)

R(u) =
v2− v1

v1 + v2
I (−u)(0.28)

Again, for R, u = z+ v1t with z ≤ 0 and for I, u = z− v1t with z ≤ 0.
These results apply to any wave shape, not just to sinusoidal waves.
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