RECTANGULAR WAVE GUIDE: TRANSVERSE MAGNETIC MODES

Link to: physicspages home page.
To leave a comment or report an error, please use the auxiliary blog.
Post date: 1 Oct 2014.

We can work out the theory of a transverse magnetic (TM) wave in a rectangular wave guide of dimensions a in the x direction and b in the y direction, in the same way as for the TE wave. In a TM wave the component B_z parallel to the axis of the wave guide is zero, so we have only a single wave equation to solve.

\[
\frac{\partial^2 E_z}{\partial x^2} + \frac{\partial^2 E_z}{\partial y^2} + \frac{\omega^2}{c^2} - k^2 \right] E_z = 0 \quad (1)
\]

As this is identical to the equation for TE waves, we have the same solution:

\[
E_z = X(x)Y(y) \quad (2)
\]

\[
X(x) = A \sin k_x x + B \cos k_x x \quad (3)
\]

\[
Y(y) = C \sin k_y y + D \cos k_y y \quad (4)
\]

The boundary conditions are different here, however, as we require

\[
E_1 \parallel - E_2 \parallel = 0 \quad (5)
\]

If the wave guide is a perfect conductor, then $E = 0$ inside it, so $E \parallel = 0$ at all boundaries of the guide. In particular, $E_z = 0$ for $x = 0$, a and $y = 0$, b. This means $B = D = 0$, so

\[
E_z(x, y) = E_0 \sin k_x x \sin k_y y \quad (6)
\]

and

\[
k_x = \frac{m \pi}{a} \quad (7)
\]

\[
k_y = \frac{n \pi}{b} \quad (8)
\]
Because E_z uses sines rather than cosines, the integers m and n must both be non-zero in order for the wave to exist at all, so the lowest TM mode is TM$_{11}$.

The wave number has the same form as in the TE case:

$$k = \sqrt{\frac{\omega^2}{c^2} - \pi^2 \left(\frac{m^2}{a^2} + \frac{n^2}{b^2} \right)}$$ \hspace{1cm} (9)

$$\equiv \frac{1}{c} \sqrt{\omega^2 - \omega_{mn}^2}$$ \hspace{1cm} (10)

$$\omega_{mn} = c\pi \sqrt{\left(\frac{m^2}{a^2} + \frac{n^2}{b^2} \right)}$$ \hspace{1cm} (11)

The phase and group velocities are the same as for TE waves

$$v_p = \frac{\omega}{k}$$ \hspace{1cm} (12)

$$v_g = \frac{d\omega}{dk} = c\sqrt{1 - \frac{\omega_{mn}^2}{\omega^2}}$$ \hspace{1cm} (13)

The ratio of lowest cutoff frequencies is

$$\frac{\omega_{TM}^{11}}{\omega_{TE}^{10}} = \frac{\pi c \sqrt{\frac{1}{a^2} + \frac{1}{b^2}}}{\pi c/a} = \frac{1}{b} \sqrt{a^2 + b^2}$$ \hspace{1cm} (14)