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We now look at the retarded potentials for a moving point charge q. The

potentials are

V (r, t) =
1

4πε0

ˆ
ρ(r′, tr)

d
d3r′ (1)

A(r, t) =
µ0

4π

ˆ
J(r′, tr)

d
d3r′ (2)

where

tr ≡ t−
d

c
(3)

and

d ≡
∣∣r− r′

∣∣ (4)

=

√
(x−x′)2 +(y−y′)2 +(z− z′)2 (5)

d̂ =
r− r′

d
(6)

The charge density of a point charge is represented by a delta function in
space, so if the charge’s trajectory is given by w(t′) then

ρ
(
r′, t′

)
= qδ3 (r′−w

(
t′
))

(7)
To work out V , we need the charge density at the retarded time tr, which

we can write as the integral over time of the charge density multiplied by
another delta function:

ρ
(
r′, tr

)
= qδ3 (r′−w

(
t′
))ˆ

δ
(
t′− tr

)
dt′ (8)

We need to keep straight the different times we’re using here. The time
t is the observation time, t′ is the integration variable and tr is the retarded

1

http://physicspages.com
https://physicspagescomments.wordpress.com
http://physicspages.com/pdf/Griffiths EM/Griffiths Problems 10.08.pdf


LIÉNARD-WIECHERT POTENTIALS FOR A MOVING POINT CHARGE 2

time, which is the time at which the signal that we are receiving at time t
left the moving charge, which is

tr = t− |r− r′|
c

(9)

The potential can now be written as an integral over both time and space:

V (r, t) =
q

4πε0

ˆ
d3r′

δ3 (r′−w(t′))

|r− r′|

ˆ
dt′δ

(
t′− tr

)
(10)

=
q

4πε0

ˆ
d3r′

δ3 (r′−w(t′))

|r− r′|

ˆ
dt′δ

(
t′−

(
t− |r− r′|

c

))
(11)

We can do the spatial integration which sets r′ = w(t′)

4πε0

q
V (r, t) =

ˆ
dt′

1
|r−w(t′)|

δ

(
t′−

(
t− |r−w(t′)|

c

))
(12)

The trick now is to transform the argument of the delta function so we can
do the integral. To do this, we need to work out δ (f (x)) for some function
f (x). To work this out, we use the substitution

u = f (x) (13)
du = f ′ (x)dx (14)

so we get

ˆ
δ (f (x))dx =

ˆ
δ (u)

|f ′ (x)|
du (15)

=
1

|f ′ (x(0))|
(16)

where we need to solve for x as a function of u from 13 and then find
x(u= 0).

For our problem, we have

f
(
t′
)

= t′−
(
t− |r−w(t′)|

c

)
(17)

df

dt′
= 1+

1
c

d

dt′
∣∣r−w

(
t′
)∣∣ (18)
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Let’s select our coordinate axes so that, at time t′, w = −wx̂ and dw
dt′ =

+βcx̂ where 0 < β < 1. That is, the charge is on the negative x axis and is
moving in the +x direction with a speed βc. Then we have

d

dt′
∣∣r−w

(
t′
)∣∣2 = 2

∣∣r−w
(
t′
)∣∣ d
dt′
∣∣r−w

(
t′
)∣∣ (19)

=
d

dt′
[(

r−w
(
t′
))
·
(
r−w

(
t′
))]

(20)

= −2
(
r−w

(
t′
))
· dw
dt′

(21)

= −2βc
(
r−w

(
t′
))
· x̂ (22)

d

dt′
∣∣r−w

(
t′
)∣∣ = −βc(r−w(t′)) · x̂

|r−w(t′)|
(23)

= −(r−w(t′)) ·v
|r−w(t′)|

(24)

where in the last line v≡ βcx̂ is the velocity of the charge. Therefore

df

dt′
= 1− (r−w(t′)) ·v

c |r−w(t′)|
(25)

Returning to 12 we have f (t′) = 0 when t′ = tr so we can do the integral
over the delta function to get

V (r, t) =
q

4πε0

ˆ
dt′

1
|r−w(t′)|

δ

(
t′−

(
t− |r−w(t′)|

c

))
(26)

=
q

4πε0

1

|r−w(tr)|
(

1− (r−w(tr))·v
c|r−w(tr)|

) (27)

=
qc

4πε0

1
(c |r−w(tr)|− (r−w(tr)) ·v)

(28)

The current density for a moving point charge is just

J = ρv (29)

so the derivation of A from 2 follows exactly the same path and we get

A(r, t) =
µ0qc

4π
v

(c |r−w(tr)|− (r−w(tr)) ·v)
(30)

=
v
c2V (r, t) (31)
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These are the Liénard-Wiechert potentials for a moving point charge.
Griffiths gives a heuristic argument as to why the extra term−(r−w(tr))·

v turns up in the denominator. The effect arises because of the perception of
size of a moving object. If we see a metre stick coming directly at us with
a speed v, we will perceive it to be slightly longer than it actually is, since
the light from the far end of the stick left the stick when it was further away
from us than the light from the near end. Although this argument does give
the right answer and the argument doesn’t depend ultimately on the size of
the object approaching, I find the argument unsatisfying when applied to
a point object, since I’d still expect that the effect should disappear in that
case. The argument above, using delta functions, is a lot more abstract than
the moving metre stick argument, but at least it shows rigorously how the
effect arises.

Example. We have a point charge q moving in a circle of radius a in the xy
plane at constant angular speed ω so that its position is given by

w(t) = ax̂cosωt+aŷsinωt (32)

The velocity is

v(t) =
dw
dt

=−aωx̂sinωt+aωŷcosωt (33)

For an observation point r = zẑ the retarded time is

tr = t− |r−w(t′)|
c

= t−
√
z2 +a2

c
(34)

This is independent of the charge’s position, since it’s always at the same
distance from a point on the z axis. Also by direct calculation

(r−w(tr)) ·v = 0 (35)

so the potentials are

V (r, t) =
qc

4πε0

1
(c |r−w(tr)|− (r−w(tr)) ·v)

(36)

=
q

4πε0 |r−w(tr)|
(37)

=
q

4πε0
√
z2 +a2

(38)

A(r, t) =
qaω

4πε0c2
√
z2 +a2

(−x̂sinωtr+ ŷcosωtr) (39)
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