FORCE OF POINT CHARGE IN A HYPERBOLIC TRAJECTORY ON A FIXED POINT CHARGE

Link to: physicspages home page.

To leave a comment or report an error, please use the auxiliary blog.

References: Griffiths, David J. (2007), Introduction to Electrodynamics, 3rd Edition; Pearson Education - Problem 10.24.

We'll now return to the point charge q_2 moving on a hyperbolic trajectory along the x axis. Its position is given by

$$x(t) = \sqrt{b^2 + c^2 t^2} \tag{1}$$

Suppose there is a second charge q_1 fixed at x=0. What force does q_1 exert on q_2 at time t? If we look at the problem from q_2 's perspective, it needs to know what influence q_1 has on the point x that it $(q_2$, that is) currently occupies. In order for a signal to reach x at time t, it had to leave q_1 at time $t_r=t-\frac{x}{c}$. But since q_1 is fixed at the origin, the force that q_1 exerts on any charge q_2 at the point x is always just given by Coulomb's law without any retarded time, that is

$$F_2(t) = \frac{q_1 q_2}{4\pi\epsilon_0 x^2} \tag{2}$$

$$= \frac{q_1 q_2}{4\pi\epsilon_0} \frac{1}{b^2 + c^2 t^2} \tag{3}$$

The total impulse delivered to q_2 is

$$I_2 = \int_{-\infty}^{\infty} F_2(t) dt \tag{4}$$

$$= \frac{q_1 q_2}{4\pi\epsilon_0 b^2} \int_{-\infty}^{\infty} \frac{1}{1 + \frac{c^2}{b^2} t^2} dt$$
 (5)

$$= \frac{q_1 q_2}{4\pi\epsilon_0 bc} \tag{6}$$

To calculate the force q_2 exerts on q_1 we do need the retarded time, since q_2 is moving. [Incidentally, it might seem that by considering q_1 as at rest and q_2 as moving, and treating the two cases differently, we're violating the principle of relativity, but we're not. The reason is that q_2 is not in an inertial frame; the hyperbolic trajectory means that its velocity is never constant, so q_1 and q_2 are not equivalent.]

1

The retarded time is calculated from

$$|\mathbf{r} - \mathbf{w}(t_r)| = c(t - t_r) \tag{7}$$

Here $\mathbf{r} = 0$ is the location of q_1 and $\mathbf{w}(t_r) = \sqrt{b^2 + c^2 t_r^2} \hat{\mathbf{x}}$ is the position of q_2 . We get

$$\sqrt{b^2 + c^2 t_r^2} = c(t - t_r) (8)$$

$$t_r = \frac{t}{2} - \frac{b^2}{2c^2t} \tag{9}$$

Note that as $t \to 0$, $t_r \to -\infty$ so q_2 is not visible to q_1 before t = 0, so the retarded potential is zero for t < 0. The force for t > 0 is therefore (the minus sign indicates the force is to the left if both charges are the same sign)

$$F_1(t) = -\frac{q_1 q_2}{4\pi\epsilon_0} \frac{1}{b^2 + \frac{c^2}{4} \left(t - \frac{b^2}{c^2 t}\right)^2}$$
 (10)

$$= -\frac{q_1 q_2}{\pi \epsilon_0} \frac{c^2 t^2}{4c^2 b^2 t^2 + (c^2 t^2 - b^2)^2}$$
 (11)

$$= -\frac{q_1 q_2}{\pi \epsilon_0} \frac{c^2 t^2}{\left(c^2 t^2 + b^2\right)^2} \tag{12}$$

The total impulse is found by integrating F_1 from t = 0 to infinity, since there is no force for t < 0.

$$I_1 = -\frac{q_1 q_2}{\pi \epsilon_0} \int_0^\infty \frac{c^2 t^2}{\left(c^2 t^2 + b^2\right)^2} dt \tag{13}$$

$$= -\frac{q_1 q_2}{4\pi\epsilon_0 bc} \tag{14}$$

[The integral can be done by parts, although I used Maple.] Thus the two impulses are equal and opposite.