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One common instance of an accelerated charge is a charge moving in a

circle. In this case the particle’s instantaneous velocity v is always perpen-
dicular to its instantaneous acceleration a. This is known as synchrotron
radiation, since it is the radiation given off by particles in a synchrotron
particle accelerator, where charged particles move in circular orbits between
the poles of a magnet.

We can use the Liénard formulato work out the power radiated by such a
charge:

dP

dΩ
=

µ0q
2

16π2c2
|r̂× (u×a)|2

(r̂ ·u)5 (1)

P =
µ0q

2γ6

6πc

[
a2− |v×a|2

c2

]
(2)

At one instant of time, we can take

v = vẑ (3)
a = ax̂ (4)
r̂ = sθcφx̂+sθsφŷ+ cθẑ (5)
u = cr̂−v (6)

where we’re using our usual shorthand for trig functions: sθ ≡ sinθ, cθ ≡
cosθ and so on. We can now work out the components of 1:
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r̂ ·u = cr̂ · r̂−vcθ (7)
= c−vcθ (8)

= c(1−βcθ) (9)
u×a = cr̂×ax̂−vẑ×ax̂ (10)

= ca
(
−sθsφẑ+ cθŷ

)
−avŷ (11)

r̂× (u×a) =

∣∣∣∣∣∣
x̂ ŷ ẑ

sθcφ sθsφ cθ
0 cacθ−av −casθsφ

∣∣∣∣∣∣ (12)

= x̂
[
−cas2

θs
2
φ− cθ (cacθ−av)

]
+ (13)

ŷcas2
θsφcφ+ ẑ

(
casθcθcφ−avsθcφ

)
Taking the square of this last vector leads to a lengthy expression which

can be simplified by applying s2+c2 = 1 repeatedly. We get, using β= v/c:
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We can simplify this as follows. The first and seventh terms combine to
give
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φ
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φ

)
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φ (15)

Combining this with the eighth term:
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Combining this with the fourth and last terms we get

s2
θc

2
φ−2s2

θc
2
φ+s

2
θc

2
φβ

2 =−
(
1−β2)s2

θc
2
φ (17)

The second, third and sixth terms combine to give

1+ c2
θβ

2−2cθβ = (1−βcθ)2 (18)

Finally, the fifth and ninth terms cancel, so we’re left with

1
a2c2 |r̂× (u×a)|2 = (1−βcθ)2−

(
1−β2)s2

θc
2
φ (19)

Putting everything together we get
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dP

dΩ
=
µ0q

2a2

16π2c

(1−βcθ)2−
(
1−β2)s2

θc
2
φ

(1−βcθ)5 (20)

To get the total power, we need to integrate this over all solid angles, so
we get

P =
µ0q

2a2

16π2c

ˆ π

0

ˆ 2π

0
dφdθsθ

(1−βcθ)2−
(
1−β2)s2

θc
2
φ

(1−βcθ)5 (21)

The integral over φ is easy, using

ˆ 2π

0
c2
φdφ= π (22)

so we’re left with the integral over θ:

P =
µ0q

2a2

16πc

ˆ π

0
dθ

2(1−βcθ)2−
(
1−β2)s2

θ

(1−βcθ)5 sθ (23)

=
µ0q

2a2

16πc

ˆ π

0
dθ

2(1−βcθ)2−
(
1−β2)(1− c2

θ

)
(1−βcθ)5 sθ (24)

This nasty looking integral can be done by using partial fractions, since
it is the ratio of two polynomials in cθ. I did the integral using Maple, but if
you’re interested in doing it by hand, the partial fraction decomposition is

2(1−βcθ)2−
(
1−β2)(1− c2

θ

)
(1−βcθ)5 =−

(
β4−2β2 +1

)
β2 (β cos(θ)−1)5 +2

(
β2−1

)
β2 (β cos(θ)−1)4−

(
β2 +1

)
(β cos(θ)−1)3β2

(25)
The presence of the extra sinθ from the solid angle element saves the day,

since it multiplies each term in the partial fraction expansion, providing the
derivative of cosθ on the top of each fraction. For example

ˆ
dθ

sinθ

(β cos(θ)−1)5 =
1

4β (β cos(θ)−1)4 (26)

with the other two terms having similar integrals.
The result of the integral is
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ˆ π

0
dθ

2(1−βcθ)2−
(
1−β2)(1− c2

θ

)
(1−βcθ)5 sθ =

8

3(1−β)2 (1+β)2 (27)

=
8

3(1−β2)
2 (28)

=
8γ4

3
(29)

so we get for the total power

P =
µ0q

2a2

16πc
8γ4

3
(30)

=
µ0q

2a2γ4

6πc
(31)


