DECAY OF A PION INTO A MUON AND A NEUTRINO

We can use the conservation of relativistic energy and momentum to analyze the interaction of elementary particles. For example, a pion at rest can decay into a muon and a neutrino. Conservation of energy and 3-momentum require

\[E_\pi = m_\pi c^2 = E_\mu + E_\nu \] \hspace{1cm} (1)

\[p_\pi = 0 = p_\mu + p_\nu \] \hspace{1cm} (2)

We can use the relation

\[E^2 - p^2 c^2 = m^2 c^4 \] \hspace{1cm} (3)

to relate energy and momentum. Assuming the neutrino is massless (it isn’t quite, but it’s close) we have

\[E_\nu = c p_\nu \] \hspace{1cm} (4)

while for the muon

\[E_\mu = c \sqrt{p_\mu^2 + m_\mu^2 c^2} \] \hspace{1cm} (5)

so

\[m_\pi c = \sqrt{p_\mu^2 + m_\mu^2 c^2 + p_\nu} \] \hspace{1cm} (6)

But \(p_\nu = -p_\mu \) from \(2 \) so
where the last line follows from [5].

The velocity of the muon can be found from

\[E_\mu = p^0 c \]
\[= \frac{m_\mu c^2}{\sqrt{1-u^2/c^2}} \]
\[\frac{m_\mu^2 + m_\pi^2 c^2}{2m_\pi c^2} = \frac{m_\mu c^2}{\sqrt{1-u^2/c^2}} \]
\[u = c \sqrt{1 - \frac{4m_\pi^2 m_\mu^2}{(m_\pi^2 + m_\mu^2)^2}} \]
\[= \frac{m_\mu^2}{m_\pi^2 + m_\mu^2 c} \]