
FOUR-ACCELERATION AND MINKOWSKI FORCE

Link to: physicspages home page.
To leave a comment or report an error, please use the auxiliary blog.
References: Griffiths, David J. (2007), Introduction to Electrodynamics,

3rd Edition; Pearson Education - Chapter 12, Problem 12.38.
We can define a four-acceleration as the derivative of four-velocity with

respect to proper time:
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i ≡ dη i

dτ
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Looking first at α0, we have
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= c
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The derivative in the last line we worked out earlier:
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=
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so
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(0.9) α
0 =

u ·a
c(1−u2/c2)

2

The spatial components work out to

α =
1
m

dp
dτ

(0.10)

=
1

m
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dp
dt

(0.11)

=
1

m
√

1−u2/c2
F(0.12)

We alsoworked out the force earlier:

(0.13) F =
m√

1−u2/c2

[
a+

(u ·a)u
c2 −u2

]
so

(0.14) α =
1
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[
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]
The invariant square of α i is (using γ ≡ 1/

√
1−u2/c2)

αiα
i =−γ
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]
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This reduces to a2 to first order in u.
The scalar product of four-acceleration and four-velocity is, using 0.3:
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α
i
ηi = −γ

5 (u ·a)+ γ
3 (u ·a)+ γ

5 (u ·a) u2

c2(0.20)

= (u ·a)γ
3
[

1− γ
2
(

1− u2

c2

)]
(0.21)

= 0(0.22)

Finally, we can use the four-acceleration to write the Minkowski force,
which is the derivative of the four-momentum with respect to the proper
time:

K ≡ dp
dτ

(0.23)

= mα(0.24)

The Minkowski force, used with four-acceleration, looks just like the
non-relativistic form of Newton’s second law. If we complete the Minkowski
force by including its 0 component, we have

(0.25) K0 = mα
0

from which the invariant product with four-velocity follows:

(0.26) Ki
ηi = mα

i
ηi = 0
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