MOTION UNDER A CONSTANT MINKOWSKI FORCE

Link to: physicspages home page.

To leave a comment or report an error, please use the auxiliary blog.

Reference: Griffiths, David J. (2007), Introduction to Electrodynamics, 3rd Edition; Pearson Education - Chapter 12, Problem 12.60.

The Minkowski force K is the rate of change of four-momentum with respect to proper time, and allows Newton's law to be written in its natural form

$$\mathbf{K} = m\alpha \tag{1}$$

where α is the proper acceleration, or second derivative of position with respect to proper time. Here we'll investigate the behaviour of a particle subject to a constant Minkowski force in one dimension.

In terms of ordinary force, we have

$$K = \frac{dp}{d\tau} = \frac{dp}{dt}\frac{dt}{d\tau} = \frac{1}{\sqrt{1 - u^2/c^2}}F\tag{2}$$

The ordinary momentum p is

$$p = \frac{mu}{\sqrt{1 - u^2/c^2}}\tag{3}$$

so its derivative is

$$\frac{dp}{dt} = \frac{m}{\sqrt{1 - u^2/c^2}} \frac{du}{dt} + \frac{mu^2}{(1 - u^2/c^2)^{3/2}} \frac{du}{dt}$$
(4)

Inserting this into 2 we get

$$\frac{K}{m}dt = \frac{du}{1 - u^2/c^2} + \frac{u^2 du}{(1 - u^2/c^2)^2}$$
 (5)

We can integrate both sides (using software, or integral tables) to get

$$\frac{K}{m}t + C = \frac{c}{4}\ln\left[\frac{c+u}{c-u}\right] + \frac{c^2}{4}\left[\frac{1}{c-u} - \frac{1}{c+u}\right]$$
 (6)

where C is a constant of integration. If the initial conditions are u=0 at t=0, then C=0 and we have

$$\frac{K}{m}t = \frac{c}{4}\ln\left[\frac{c+u}{c-u}\right] + \frac{c^2}{4}\left[\frac{1}{c-u} - \frac{1}{c+u}\right] \tag{7}$$

This is an implicit equation for the speed of the particle as a function of time. If we want the position as a function of time, we need a relation between u and x. Returning to 2 and 3 we have

$$\sqrt{1 - u^2/c^2} \frac{K}{m} = \frac{d}{dt} \left(\frac{u}{\sqrt{1 - u^2/c^2}} \right)$$
 (8)

We can use the chain rule to convert the derivative on the RHS to a derivative with respect to x by multiplying both sides by dt/dx

$$\frac{dt}{dx}\sqrt{1-u^2/c^2}\frac{K}{m} = \frac{dt}{dx}\frac{d}{dt}\left(\frac{u}{\sqrt{1-u^2/c^2}}\right) = \frac{d}{dx}\left(\frac{u}{\sqrt{1-u^2/c^2}}\right)$$
(9)

Now dx/dt = u so dt/dx = 1/u and

$$\frac{\sqrt{1 - u^2/c^2}}{u} \frac{K}{m} = \frac{d}{dx} \left(\frac{u}{\sqrt{1 - u^2/c^2}} \right)$$
 (10)

If we call the expression in the parentheses on the RHS A, then we can integrate with respect to x (since K/m is a constant):

$$A \equiv \frac{u}{\sqrt{1 - u^2/c^2}} \tag{11}$$

$$\frac{1}{A}\frac{K}{m} = \frac{dA}{dx} \tag{12}$$

$$\frac{K}{m}x + C = \frac{1}{2}A^2 \tag{13}$$

Again, starting from rest at the origin we have u=0 when x=0 so A=0 also, and therefore C=0, so we have

$$A = \frac{u}{\sqrt{1 - u^2/c^2}} = \sqrt{\frac{2Kx}{m}}$$
 (14)

At this point we could get a relation between x and t by solving 14 for u in terms of x and then substituting this into 7. For reference, we get

$$u = \sqrt{\frac{2Kx}{m}} \frac{1}{\sqrt{1 + 2Kx/mc^2}} \tag{15}$$

so substituting will give something of a mess. To get the answer given in

Griffiths requires a bit of algebra, but here is how I did it. Griffiths defines the quantity z as

$$z \equiv \sqrt{\frac{2Kx}{mc^2}} \tag{16}$$

$$= \frac{A}{c} \tag{17}$$

$$= \frac{A}{c}$$

$$= \frac{u}{c\sqrt{1 - u^2/c^2}}$$
(17)
$$(18)$$

The quantities appearing in Griffiths's answer are

$$\sqrt{1+z^2} = \frac{c}{\sqrt{c^2 - u^2}} \tag{19}$$

$$z\sqrt{1+z^2} = \frac{u}{c(1-u^2/c^2)} \tag{20}$$

We can rewrite 7 to get

$$\frac{2Kt}{mc} = \frac{1}{2}\ln\left[\frac{c+u}{c-u}\right] + \frac{c}{2}\left[\frac{1}{c-u} - \frac{1}{c+u}\right]$$
(21)

We'll deal with the logarithm first. Its argument is

$$\frac{c+u}{c-u} = \frac{(c+u)^2}{c^2(1-u^2/c^2)}$$
 (22)

$$= \frac{2u}{c(1-u^2/c^2)} + \frac{u^2+c^2}{c^2-u^2}$$
 (23)

$$= \frac{2u}{c(1-u^2/c^2)} + \frac{c^2 - u^2 + 2u^2}{c^2 - u^2}$$
 (24)

$$= \frac{2u}{c(1-u^2/c^2)} + 1 + \frac{2u^2}{c^2(1-u^2/c^2)}$$
 (25)

Now we also have

$$\left(z + \sqrt{1+z^2}\right)^2 = 2z^2 + 2z\sqrt{1+z^2} + 1 \tag{26}$$

$$= \frac{2u^2}{c^2(1-u^2/c^2)} + \frac{2u}{c(1-u^2/c^2)} + 1$$
 (27)

$$= \frac{c+u}{c-u} \tag{28}$$

Therefore

$$\frac{1}{2}\ln\left[\frac{c+u}{c-u}\right] = \ln\sqrt{\frac{c+u}{c-u}}$$

$$= \ln\left(z+\sqrt{1+z^2}\right) \tag{29}$$

For the second term in 21, we have

$$\frac{c}{2} \left[\frac{1}{c - u} - \frac{1}{c + u} \right] = \frac{c}{2} \frac{2u}{c^2 (1 - u^2/c^2)}$$
 (31)

$$= \frac{u}{c(1 - u^2/c^2)} \tag{32}$$

$$= z\sqrt{1+z^2} \tag{33}$$

Putting it all together, we have

$$\frac{2Kt}{mc} = \ln\left(z + \sqrt{1 + z^2}\right) + z\sqrt{1 + z^2}$$
 (34)