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The Minkowski force K is the rate of change of four-momentum with

respect to proper time, and allows Newton’s law to be written in its natural
form

K =mα (1)

where α is the proper acceleration, or second derivative of position with
respect to proper time. Here we’ll investigate the behaviour of a particle
subject to a constant Minkowski force in one dimension.

In terms of ordinary force, we have

K =
dp

dτ
=
dp

dt

dt

dτ
=

1√
1−u2/c2

F (2)

The ordinary momentum p is

p=
mu√

1−u2/c2
(3)

so its derivative is

dp

dt
=

m√
1−u2/c2

du

dt
+

mu2

(1−u2/c2)
3/2

du

dt
(4)

Inserting this into 2 we get

K

m
dt=

du

1−u2/c2 +
u2 du

(1−u2/c2)
2 (5)

We can integrate both sides (using software, or integral tables) to get

K

m
t+C =

c

4
ln
[
c+u

c−u

]
+
c2

4

[
1

c−u
− 1
c+u

]
(6)

where C is a constant of integration. If the initial conditions are u = 0 at
t= 0, then C = 0 and we have
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K

m
t=

c

4
ln
[
c+u

c−u

]
+
c2

4

[
1

c−u
− 1
c+u

]
(7)

This is an implicit equation for the speed of the particle as a function
of time. If we want the position as a function of time, we need a relation
between u and x. Returning to 2 and 3 we have√

1−u2/c2K

m
=

d

dt

(
u√

1−u2/c2

)
(8)

We can use the chain rule to convert the derivative on the RHS to a de-
rivative with respect to x by multiplying both sides by dt/dx

dt

dx

√
1−u2/c2K

m
=
dt

dx

d

dt

(
u√

1−u2/c2

)
=

d

dx

(
u√

1−u2/c2

)
(9)

Now dx/dt= u so dt/dx= 1/u and√
1−u2/c2

u

K

m
=

d

dx

(
u√

1−u2/c2

)
(10)

If we call the expression in the parentheses on the RHS A, then we can
integrate with respect to x (since K/m is a constant):

A ≡ u√
1−u2/c2

(11)

1
A

K

m
=

dA

dx
(12)

K

m
x+C =

1
2
A2 (13)

Again, starting from rest at the origin we have u= 0 when x= 0 soA= 0
also, and therefore C = 0, so we have

A=
u√

1−u2/c2
=

√
2Kx
m

(14)

At this point we could get a relation between x and t by solving 14 for u
in terms of x and then substituting this into 7. For reference, we get

u=

√
2Kx
m

1√
1+2Kx/mc2

(15)

so substituting will give something of a mess. To get the answer given in
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Griffiths requires a bit of algebra, but here is how I did it. Griffiths defines
the quantity z as

z ≡
√

2Kx
mc2 (16)

=
A

c
(17)

=
u

c
√

1−u2/c2
(18)

The quantities appearing in Griffiths’s answer are

√
1+ z2 =

c√
c2−u2

(19)

z
√

1+ z2 =
u

c(1−u2/c2)
(20)

We can rewrite 7 to get

2Kt
mc

=
1
2

ln
[
c+u

c−u

]
+
c

2

[
1

c−u
− 1
c+u

]
(21)

We’ll deal with the logarithm first. Its argument is

c+u

c−u
=

(c+u)2

c2 (1−u2/c2)
(22)

=
2u

c(1−u2/c2)
+
u2 + c2

c2−u2 (23)

=
2u

c(1−u2/c2)
+
c2−u2 +2u2

c2−u2 (24)

=
2u

c(1−u2/c2)
+1+

2u2

c2 (1−u2/c2)
(25)

Now we also have

(
z+
√

1+ z2
)2

= 2z2 +2z
√

1+ z2 +1 (26)

=
2u2

c2 (1−u2/c2)
+

2u
c(1−u2/c2)

+1 (27)

=
c+u

c−u
(28)
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Therefore

1
2

ln
[
c+u

c−u

]
= ln

√
c+u

c−u
(29)

= ln
(
z+
√

1+ z2
)

(30)

For the second term in 21, we have

c

2

[
1

c−u
− 1
c+u

]
=

c

2
2u

c2 (1−u2/c2)
(31)

=
u

c(1−u2/c2)
(32)

= z
√

1+ z2 (33)

Putting it all together, we have

2Kt
mc

= ln
(
z+
√

1+ z2
)
+ z
√

1+ z2 (34)


