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Laplace’s equation governs the electric potential in regions where there

is no charge. Its form is

∇
2V = 0 (1)

We’ve seen that, for a particular set of boundary conditions, solutions to
Laplace’s equation are unique. That fact can be used to invent the method of
images, in which a complex problem can be solved by inventing a simpler
problem that has the same boundary conditions.

However, the method of images works only in a few special (and fairly
contrived) situations. In the more general case, we need a way of solving
Laplace’s equation directly.

A method which we have already met in quantum mechanics when solv-
ing Schrödinger’s equation is that of separation of variables. In general,
the potential is a function of all three spatial coordinates: V = V (x,y,z).
We try to find a solution by assuming that V is a product of three functions,
each of which is a function of only one spatial coordinate:

V (x,y,z) =X(x)Y (y)Z(z) (2)
Substituting this into Laplace’s equation, we get

Y Z
d2X

dx2 +XZ
d2Y

dy2 +XY
d2Z

dz2 = 0 (3)

We can divide through by XY Z to get

1
X

d2X

dx2 +
1
Y

d2Y

dy2 +
1
Z

d2Z

dz2 = 0 (4)

The key point in this equation is that each term in the sum is a function of
only one of the three independent variables x, y and z. The fact that these
variables are independent is important, for it means that the only way this
equation can be satisfied is if each term in the sum is a constant. Suppose
this wasn’t true; for example, suppose the first term in the sum was some
function f(x) that actually does vary with x. Then we could hold y and z
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constant and vary x, causing this first term to vary. In this case we cannot
satisfy the overall equation, since if we found some value of x for which the
sum of the three terms was zero, changing x would change the first term but
not the other two, so the overall sum would no longer be zero.

Thus we can say that

1
X

d2X

dx2 = C1 (5)

1
Y

d2Y

dy2 = C2 (6)

1
Z

d2Z

dz2 = C3 (7)

where the three constants satisfy

C1 +C2 +C3 = 0 (8)
Equations of this form have one of two types of solution (well, three, if

we consider the constant to be zero, but that’s not usually very interesting),
depending on whether the constant is positive or negative. For example, if
C1 > 0, we can write it as C1 = k2 and the solution has the form

X(x) = Aekx+Be−kx (9)

for some constants A and B.
If C1 < 0, we can write it as C1 =−k2 and the solution has the form

X(x) =D sinkx+E coskx (10)

for some constantsD andE. The constants in each case must be determined
from the boundary conditions. Similar solutions exist for Y (y) and Z(z).

Now you might be wondering whether the assumption that the potential
is the product of three separate functions is valid. After all, it does seem to
be a rather severe restriction on the solution. It’s easiest to see whether this
assumption is valid by considering a particular example.

The key consideration in any Laplace problem is the specification of the
boundary conditions. As a first example, suppose we have the following
setup. We have two semi-infinite conducting plates that lie parallel to the
xz plane, with their edges lying on the z axis (that is, at x = 0). One plate
is at y = 0 and the other is at y = a. Both plates are grounded, so their
potential is constant at V = 0.
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The strip between the plates at x= 0 is filled with another substance (not
a conductor, so the potential can vary across it) that is insulated from the two
plates, and its potential is some function V0(y). Solve Laplace’s equation to
find the potential between the plates.

It’s important to note what the boundary conditions are here. The two
plates are held at V = 0 so provide boundary conditions at y = 0 and y = a:

V (x,0, z) = V (x,a,z) = 0 (11)
The strip at x= 0 provides another boundary condition

V (0,y,z) = V0(y) (12)
Finally, we can impose the condition that the potential drops to zero as

we get infinitely far from the strip at x= 0 so we have

V (∞,y,z) = 0 (13)
The first thing to notice is that none of these boundary conditions depends

on z, so we can take Z(z) = constant so that C3 = 0 above. This means
that the problem effectively reduces to a two-dimensional problem with the
condition

C1 +C2 = 0 (14)
Now we must make a choice as to which of the constants is positive and

which is negative. Suppose we chose C1 =−k2 < 0. Then we would get

X(x) =D sinkx+E coskx (15)
Looking at the boundary conditions above, we see as x→ ∞ we need

X(x)→ 0. But since X(x) is the sum of two oscillating functions, this
can’t happen unless D = E = 0 or X = 0, which isn’t a valid solution
since that would mean that V (x,y,z) = 0 everywhere, and that violates the
condition at x= 0.

So we can try the other choice: C1 = k2 > 0. This gives

X(x) = Aekx+Be−kx (16)
Now as x→ ∞ the negative exponential term drops to zero, so we need

only require that A= 0 and we get

X(x) =Be−kx (17)
From this choice, we know that C2 =−C1 =−k2 and

Y (y) =D sinky+E cosky (18)
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From the condition V = 0 when y = 0 we get

E = 0 (19)

Finally, from V = 0 when y = a we get

D sinka = 0 (20)

k =
nπ

a
(21)

where n is a positive integer. It must be non-zero, since n = 0 again gives
us V = 0 everywhere. It must not be negative, since that would give us a
negative k which would give the wrong behaviour for X(x).

So our solution so far is

V (x,y,z) =BDe−nπx/a sin
(nπ
a
y
)

(22)

At this stage, you might think we’ve solved ourself into a corner, since we
haven’t used the final boundary condition which is that V (0,y,z) = V0(y).
From our solution so far, we have

V (0,y,z) =BD sin
(nπ
a
y
)

(23)

so unless we choose V0(y) to be one of those sine functions, we’re stuffed.
Does this mean that the separation of variables method doesn’t work here?

Not quite. The crucial point is that Laplace’s equation is linear (the
derivatives occur to the first power only), so any number of separate so-
lutions can be added together to give another solution. That is, if V1 and
V2 are solutions, then so is V1 + V2. The separation of variables method
has actually given us an infinite number of solutions (one for each value of
n = 1,2,3, . . .) so we can create yet more solutions by adding together any
combination of these individual solutions. In particular, we can say

V (x,y,z) =
∞

∑
n=1

cne
−nπx/a sin

(nπ
a
y
)

(24)

for some choice of coefficients cn. (Here, we’ve simply combined the two
constants B and D for each value of n to give the constant cn.)

How can we find these coefficients? In general, this can be fairly tricky,
but for certain boundary conditions, it turns out to be fairly straightforward.
For the boundary condition we have here, V (0,y,z) = V0(y), things aren’t
too bad. We have
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V (0,y,z) = V0(y) =
∞

∑
n=1

cn sin
(nπ
a
y
)

(25)

Some readers might recognize this as a Fourier series, and there is a
clever technique that can be used to find the cn in such a case. We mul-
tiply through by sin

(mπy
a

)
and integrate from 0 to a:

ˆ a

0
sin
(mπy

a

)
V0(y)dy =

∞

∑
n=1

cn

ˆ a

0
sin
(mπy

a

)
sin
(nπ
a
y
)
dy (26)

The integrals in the sum on the right are fairly straightforward, and we
get

ˆ a

0
sin
(mπy

a

)
sin
(nπ
a
y
)
dy =

{
0 if m 6= n
a
2 if m= n

(27)

That is

cn =
2
a

ˆ a

0
sin
(nπy

a

)
V0(y)dy (28)

As usual for physicists, the problem of proving that a Fourier series exists
and converges for any given function is left to the mathematicians, but for
pretty well any function V0(y) of physical relevance, this technique works.
Although the example here has a clean solution, many other problems do
not. If the boundaries are of some exotic shape, then it becomes impossible
to specify things in such a way that we have a clean Fourier series to work
with. As usual in such cases, we need to resort to numerical solution of
Laplace’s equation, and for that we need a computer.
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