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We saw earlier that the square of the total angular momentum commutes

with all three of its components, although these components do not com-
mute with each other. This means that L2 and one of its components, say
Lz, can be measured simultaneously. We can use this fact to work out the
eigenvalues of these two commuting operators without actually working out
the eigenfunctions (which turn out to be the spherical harmonics, although
it takes a bit of calculation to show this).

That is, we know that we can write

L2f = λf (1)
Lzf = µf (2)

for some eigenvalues λ and µ to be determined, but without the need to find
the eigenfunction f explicitly.

To this end we define the raising and lowering operators (the reason for
the names will become apparent)

L± ≡ Lx± iLy (3)

Since L2 commutes with all three components, it will also commute with
L± so we have [

L2,L±
]
= 0 (4)

The commutator [Lz,L±] can be worked out from the commutators of its
terms, as we’ve seen earlier:

[Lx,Ly] = ih̄Lz (5)
[Ly,Lz] = ih̄Lx (6)
[Lz,Lx] = ih̄Ly (7)

Using this, we get
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[Lz,L±] = [Lz,Lx]± i [Lz,Ly] (8)
= ih̄Ly± i(−ih̄Lx) (9)
= h̄(±Lx+ iLy) (10)
= ±h̄(Lx± iLy) (11)
= ±h̄L± (12)

We now make the claim that if, as above, f is an eigenfunction of both
L2 and Lz, then so are the functions L±f .

To prove this, we start with L2:

L2 (L±f) = L±L
2f (13)

= L±(λf) (14)
= λL±f (15)

The result follows because
[
L2,L±

]
= 0. Thus f is an eigenfunction of

L2 and L± with the same eigenvalue, so applying L± to this eigenfunction
results in states with the same square of total angular momentum. This is a
crucial point which we’ll use later.

Now consider Lz. We have using the commutator above

LzL±f = ±h̄L±f +L±Lzf (16)
= ±h̄L±f +L±(µf) (17)
= (±h̄+µ)(L±f) (18)

In this case, the function L±f has an eigenvalue that is raised or lowered
by h̄ depending on which operator (L+ or L−) is chosen. Thus we generate
a sequence of functions which have a constant value of L2 but a range of
values of Lz.

Now we come to an important observation. Since L2 is the square of the
total angular momentum, it isn’t possible for the observed value of one of
its components Lz to be greater than L2. Since applying L+ to f generates
a new eigenfunction with an eigenvalue that is larger by h̄, there must come
a point where this sequence of functions stops (otherwise the value of Lz

would be greater than that of L2). That is, there must be some function
fmax such that L+fmax = 0.

We can assume that the eigenvalue of Lz for fmax is h̄l for some number
l. That is, for this eigenfunction
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Lzfmax = h̄lfmax (19)
L2fmax = λfmax (20)

Now we have to use one of those annoying identities that you’d never think
of on your own.

L±L∓ = (Lx± iLy)(Lx∓ iLy) (21)

= L2
x+L

2
y∓ i(LxLy−LyLx) (22)

= L2−L2
z∓ i(ih̄Lz) (23)

= L2−L2
z± h̄Lz (24)

L2 = L±L∓+L
2
z∓ h̄Lz (25)

The second line follows from L2 = L2
x+L

2
y+L

2
z and the third line from

the commutator [Lx,Ly] = ih̄Lz.
Applying this operator to fmax and recalling that fmax is an eigenfunc-

tion of L2 with eigenvalue λ and of Lz with eigenvalue h̄l, we get by using
the second choice of sign in each term

L2fmax =
(
L−L++L2

z+ h̄Lz

)
fmax (26)

= (0+ h̄2l2 + h̄2l)fmax (27)

= h̄2l(l+1)fmax (28)

where the zero in the second line comes from our assumption thatL+fmax=
0. We therefore have the eigenvalue of L2 in terms of the maximum eigen-
value of Lz:

λ= h̄2l(l+1) (29)
We can apply a similar argument to the lowering operator L−. That is,

there must be an eigenfunction fmin with an eigenvalue h̄l′ such that low-
ering it with L− gives zero:

Lzfmin = h̄l′fmin (30)
L2fmin = h̄2l(l+1)fmin (31)
L−fmin = 0 (32)

The second line comes from the fact that all the eigenfunctions in this
sequence have the same eigenvalue for L2, so we can write this in terms
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of the number l that we got out of the maximum eigenvalue of Lz. We
can follow a similar analysis, this time taking the first choice of sign in the
expression for L2 above:

L2fmin =
(
L+L−+L

2
z− h̄Lz

)
fmin (33)

= (0+(h̄l′)2− h̄2l′)fmin (34)

= h̄2l′(l′−1)fmin (35)

Equating the two expressions for the eigenvalue of L2 we get

l′(l′−1) = l(l+1) (36)

This can be satisfied for arbitrary l if either l′ = −l or l′ = l+ 1. The
second choice doesn’t work because this would make the lowest eigenvalue
of Lz greater than the highest, so we must have l′ =−l.

The conclusion of all this is that we can write the eigenvalues ofLz asmh̄
where m runs from −l to +l in integer steps. The actual number of steps
required depends on l, but since the lowest value of m is −l, the highest
value must be mmax = l = −l+N for some integer N . Thus l = N/2 so
must be an integer or half-integer. This gives us the final result

L2fml = h̄2l(l+1)fml (37)
Lzf

m
l = h̄mfml (38)

where l = 0,1/2,1,3/2, . . . and for each value of l, m=−l,−l+1, . . . , l−
1, l.

The choice of Lz as the component we measure is arbitrary; we could
just as well have chosen Lx or Ly and get the same result. The crucial point
though is that we can choose only one component to measure at a time.
The other two components will have indefinite values. This means that it
is not correct to picture the angular momentum vector L as a precise vector
in three-dimensional space, since doing so requires specifying all three of
its components simultaneously. We can specify the magnitude of the vector
(via L2) and one of its components (such as Lz), but if we want a mental
picture of what such an angular momentum would look like, we need to
think of it as a vector of a fixed length with a fixed projection onto the z
axis, but with the other two components smeared out in the x− y plane.
This is of course very difficult to do, but it’s one of those things that we
need to get used to in quantum mechanics.
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