HERMITE POLYNOMIALS - GENERATION

Link to: physicspages home page.

To leave a comment or report an error, please use the auxiliary blog.

Reference: Griffiths, David J. (2005), Introduction to Quantum Mechanics, 2nd Edition; Pearson Education - Problem 2.16.

In the solution of the Schrödinger equation for the harmonic oscillator, we found that the wave function can be expressed as a power series:

(0.1)
$$\psi(y) = e^{-y^2/2} \sum_{j=0}^{\infty} a_j y^j$$

where y was introduced as a shorthand variable:

$$(0.2) y \equiv \sqrt{\frac{m\omega}{\hbar}} x$$

and the coefficients a_i satisfy the recursion relation

(0.3)
$$a_{j+2} = \frac{2j+1-\varepsilon}{(j+1)(j+2)}a_j$$

where ε is another shorthand variable for the energy:

$$\varepsilon \equiv \frac{2E}{\hbar\omega}$$

By requiring the recursion relation to terminate at various values of i we can generate the polynomials for the various energy states, which turn out to be the Hermite polynomials.

For example, if we take the highest value of j to be 5, then we must have

(0.5)
$$a_7 = \frac{11 - \varepsilon}{42} a_5$$
 (0.6) $= 0$

$$(0.6) = 0$$

$$(0.7) \varepsilon = 11$$

$$(0.8) E = \frac{11}{2}\hbar\omega$$

To get the coefficients, we can start with $a_0 = 0$ (since all even terms must be zero if we want $a_5 \neq 0$) and $a_1 = 1$. Then we get

(0.9)
$$a_{j+2} = \frac{2j-10}{(j+1)(j+2)}a_j$$

so $a_3 = -\frac{4}{3}$, $a_5 = \left(-\frac{1}{5}\right)\left(-\frac{4}{3}\right) = \frac{4}{15}$. The Hermite polynomial is

(0.10)
$$H_5(x) = A_5 \left[\frac{4}{15} x^5 - \frac{4}{3} x^3 + x \right]$$

where A_5 is a constant that is set by convention to make the coefficients satisfy some specified rule.

If we require the coefficient of the highest power n to be 2^n we can multiply this polynomial by 120 to get

$$(0.11) H5(x) = 32x5 - 160x3 + 120x$$

For H_6 , all the odd terms are zero, and we require $a_8 = 0$, so we get

$$(0.12) \varepsilon = 13$$

$$(0.13) E = \frac{13}{2}\hbar\omega$$

$$(0.14) a_{j+2} = \frac{2j-12}{(j+1)(j+2)}a_j$$

Taking $a_0 = 1$ and $a_1 = 0$, we get $a_2 = -6$, $a_4 = 4$, $a_6 = -\frac{8}{15}$. Requiring the coefficient of a_6 to be $2^6 = 64$ we get

$$(0.15) H_6(x) = 64x^6 - 480x^4 + 720x^2 - 120$$