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Here are some more theorems concerning Hermite polynomials, which

show up in the solution of the Schrödinger equation for the harmonic oscil-
lator.

The first theorem is that the Hermite polynomials can be obtained from a
generating function. We’ve seen generating functions in the context of the
Laguerre polynomials, which occur in the physics of the hydrogen atom.
The derivation of generating functions is something of a black art, and as it
requires the use of complex variable theory (in particular, Cauchy’s integral
formula) we’ll just accept it without proof for now. The result is

e−z2+2zx =
∞

∑
n=0

zn

n!
Hn(x) (1)

Here z is a dummy variable which is used to generate the Taylor series
of the exponential on the left. Since the kth derivative with respect to z of
the series eliminates all powers with n < k, retains zn−k terms for n > k and
reduces the term in zk to (k!/k!)Hk(x) = Hk(x), if we take the kth derivative
and then set z = 0 we’re left, magically, with Hk(x). Taking high order
derivatives of the exponential isn’t exactly pretty, of course, but it’s quite
marvellous that such a result exists at all.

As an example, we’ll use the generating function to derive the first three
polynomials. We get
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H0(x) = e0 (2)
= 1 (3)

H1(x) =
d
dz

e−z2+2zx
∣∣∣∣
z=0

(4)

= (−2z+2x) e−z2+2zx
∣∣∣
z=0

(5)

= 2x (6)

H2(x) =
d2

dz2 e−z2+2zx
∣∣∣∣
z=0

(7)

=
[
−2+(−2z+2x)2

]
e−z2+2zx

∣∣∣
z=0

(8)

= 4x2−2 (9)

Starting from the generating function, we can derive two recursion rela-
tions for the polynomials. If we take the derivative of 1 with respect to z we
get

(−2z+2x)e−z2+2zx =
∞

∑
n=1

zn−1

(n−1)!
Hn(x) (10)

If we replace the exponential on the left by its series expansion, we get

−2
∞

∑
n=0

zn+1

n!
Hn(x)+2x

∞

∑
n=0

zn

n!
Hn(x) =

∞

∑
n=1

zn−1

(n−1)!
Hn(x) (11)

We now pull the usual trick of relabelling the summation index on the
first and last sum in order to make the power of z the same in all sums. For
the first sum, we get

−2
∞

∑
n=0

zn+1

n!
Hn(x) = −2

∞

∑
n=1

zn

(n−1)!
Hn−1(x) (12)

= −2
∞

∑
n=1

n
zn

n!
Hn−1(x) (13)

For the sum on the right, we get

∞

∑
n=1

zn−1

(n−1)!
Hn(x) =

∞

∑
n=0

zn

n!
Hn+1(x) (14)

Combining these results we get
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−2
∞

∑
n=1

n
zn

n!
Hn−1(x)+2x

∞

∑
n=0

zn

n!
Hn(x) =

∞

∑
n=0

zn

n!
Hn+1(x) (15)

For n > 0, we can equate the coefficients of zn to get

Hn+1(x) = 2xHn(x)−2nHn−1(x) (16)

For the special case of n = 0 the first sum on the left makes no contribu-
tion and the other two terms give us

2xH0(x) = H1(x) (17)

which, since H0 = 1, gives us H1 = 2x, which is correct. We saw when
discussing the Rodrigues formula that

H3(x) = 8x3−12x (18)

H4(x) = 16x4−48x2 +12 (19)

so we can use the recursion relation to get the next couple of polynomials:

H5(x) = 2xH4(x)−8H3(x) (20)

= 32x5−96x3 +24x−64x3 +96x (21)
= 32x5−160x3 +120x (22)

H6(x) = 2xH5(x)−10H4(x) (23)

= 64x6−320x4 +240x2−160x4 +480x2−120 (24)
= 64x6−480x4 +720x2−120 (25)

A second recursion relation can be found by differentiating 1 with respect
to x rather than z. We get

2ze−z2+2zx =
∞

∑
n=0

H ′n(x)
zn

n!
(26)

Again, we replace the exponential by the series to get

2
∞

∑
n=0

Hn(x)
zn+1

n!
=

∞

∑
n=0

H ′n(x)
zn

n!
(27)

Relabelling the summation index on the left, we get
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2
∞

∑
n=1

Hn−1(x)
zn

(n−1)!
=

∞

∑
n=0

H ′n(x)
zn

n!
(28)

Equating coefficients of zn we get

H ′n(x) = 2nHn−1(x) (29)
For example:

H ′6 = 384x5−1920x3 +1440x (30)

= 12
(

32x5−160x3 +120x
)

(31)

= 2×6H5 (32)
H ′5 = 160x4−480x2 +120 (33)

= 10
(
16x4−48x2 +12

)
(34)

= 2×5H4 (35)
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