INFINITE SQUARE WELL WITH TRIANGULAR INITIAL STATE USING DELTA FUNCTION

Link to: physicspages home page.
To leave a comment or report an error, please use the auxiliary blog.
Post date: 24 Aug 2012.

Earlier, we looked at the case of a particle in the infinite square well with an initial wave function that was triangular:

\[\Psi(x, 0) = \begin{cases}
 Ax & 0 \leq x \leq a/2 \\
 A(a - x) & a/2 \leq x \leq a
\end{cases} \]

(1)

We find \(A \) from normalization:

\[\int_0^a |\Psi|^2 dx = A^2 a^3/12 = 1 \]

(2)

so

\[A = \sqrt{\frac{12}{a^{3/2}}} \]

(3)

Because the first derivative of \(\Psi(x, 0) \) is discontinuous at \(x = 0 \), we might encounter problems in calculating the second derivative, which we need to find the mean value of the energy if we use integration, since this is

\[\langle E \rangle = \frac{\hbar^2}{2m} \int_0^a \Psi^*(x, 0) \frac{d^2}{dx^2} \Psi(x, 0) dx \]

(4)

We can express the first derivative of wave function as a step function \(\theta(x) \):

\[\frac{d\Psi(x, 0)}{dx} = \begin{cases}
 A & 0 < x < a/2 \\
 -A & a/2 < x < a
\end{cases} = -A(2\theta(x - a/2) - 1) \]

(5)

where

\[\theta(x) = \begin{cases}
 1 & x < 0 \\
 0 & x > 0
\end{cases} \]

(6)
We’ve seen that the derivative of the step function can be taken as the delta function, so
\[
\frac{d^2\Psi(x,0)}{dx^2} = -2A\delta(x - a/2)
\]
(7)

Using the delta function directly, we get
\[
\langle H \rangle = -\frac{\hbar^2}{2m} \int_0^a \Psi^* \frac{d^2\Psi}{dx^2} dx = \frac{\hbar^2 A^2}{m} \frac{a}{2} = \frac{6\hbar^2}{ma^2}
\]
(8)

using $A^2 = 12/a^3$ from above. The final result is the same as that from summing the series as we did earlier.