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We’ve looked at the solution to the Schrödinger equation for a stationary

delta function potential well. Here we’ll consider the case of a moving delta
function well. That is, the potential is

V (x) =−αδ(x−vt) (1)

where v is the constant velocity.
A solution of the Schrödinger equation in this case is proposed to be

Ψ(x,t) =

√
mα

h̄
e−mα|x−vt|/h̄

2
e−i[(E+mv2/2)t−mvx]/h̄ (2)

To verify this, we consider first the case x 6= vt. We need to check that
the given wave function satisfies the equation

− h̄2

2m
∂2Ψ

∂x2 = ih̄
∂Ψ

∂t
(3)

This can be done by direct substitution. Since the wave function contains
an absolute value |x− vt|, we can verify the equation for the two cases
x > vt and x < vt. Using Maple to work out the derivative on the left, we
get

− h̄2

2m
∂2Ψ

∂x2 =−m
3/2√α
2h̄3

(
α2−v2h̄2±2iαvh̄

)
e−mα|x−vt|/h̄

2
e−i[(E+mv2/2)t−mvx]/h̄

(4)
Working out the right side, we get

ih̄
∂Ψ

∂t
=

√
mα

h̄3

(
h̄2 (E+mv2/2

)
∓2imαvh̄

)
e−mα|x−vt|/h̄

2
e−i[(E+mv2/2)t−mvx]/h̄

(5)
where the top sign in each case is for the region x > vt and the bottom

sign for x < vt.
If
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E =−mα
2

2h̄2 (6)

which is the energy of the bound state for the stationary delta function po-
tential, these two expressions are equal, so the wave function as given does
satisfy the Schrödinger equation if x 6= vt.

To deal with the point x = vt, we can work out the first derivative of Ψ

on either side of this point and compare the two derivatives. We get

∂Ψ

∂x
=
m3/2√α
h̄3 (∓α+ ih̄v)e−mα|x−vt|/h̄

2
e−i[(E+mv2/2)t−mvx]/h̄ (7)

If we work out these derivatives and then take the limit as x→ vt from
each side (substituting for E as above), we get:

− h̄2

2m

(
lim
x↓vt

∂Ψ

∂x
− lim
x↑vt

∂Ψ

∂x

)
=

√
mα3/2

h̄
eimt(α

2+v2h̄2)/2h̄3
(8)

Thus there is a step function in the first derivative at x= vt. The second
derivative at this point, using the fact that the derivative of the unit step
function is the delta function, is therefore:

− h̄2

2m
∂2Ψ

∂x2 =

√
mα3/2

h̄
eimt(α

2+v2h̄2)/2h̄3
δ(x−vt)− h̄2

2m
Ψ
′′
0(x,t) (9)

where Ψ
′′
0(x,t) is the second derivative of the wave function with respect to

x evaluated in the normal way.
Evaluating the wave function itself at x= vt gives:

Ψ(vt, t) =

√
mα

h̄
eimt(α

2+v2h̄2)/2h̄3
(10)

from which we can see that the first term in 9 is just αδ(x−vt)Ψ(vt, t). This
term is cancelled by the potential V (x,t)=−αδ(x−vt), so the Schrodinger
equation is satisfied at x= vt as well as for other values of x.

To work out the expectation value of the Hamiltonian, we can do it by
splitting the integral into two parts. Work out the integrals:

〈H〉=− h̄2

2m

ˆ vt

−∞

Ψ
∗
x<vtΨ

′′
x<vtdx−

h̄2

2m

ˆ
∞

vt
Ψ
∗
x>vtΨ

′′
x>vtdx (11)

Using Maple, this comes out to:
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〈H〉= m

4h̄2

(
−α2 +v2h̄2−2iαvh̄

)
+

m

4h̄2

(
−α2 +v2h̄2 +2iαvh̄

)
(12)

=
1
2
mv2− 1

2
m
α2

h̄2 (13)

The delta function from the potential is cancelled out by the delta function
from 9, so the integral involves only the ’ordinary’ second derivative of Ψ.

This energy is the original ground state energy −mα2/2h̄2 for the delta-
function well plus a kinetic energy term mv2/2 for the motion.


