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Although the examples of the Schrödinger equation that we’ve looked at

have all had exact analytic solutions, in practice this is quite rare. Usually
we need to resort to a numerical solution on a computer. We can illustrate
the technique using a familiar potential such as the harmonic oscillator. In
the analytic solution, we arrived at the following differential equation

d2ψ

dy2 = (y2− ε)ψ (1)

where we’ve used dimensionless parameters

y ≡
√
mω

h̄
x (2)

ε ≡ 2E
h̄ω

(3)

What we really want from a solution of this equation are the acceptable
values of the energy, that is, values for which the wave function is normal-
izable, which means it goes to zero at infinity. We can therefore try various
values for ε and try to home in on values that satisfy this condition. Griffiths
calls this technique ’wagging the dog’, because we are holding onto the tail
(the end result) and then seeing what sort of a solution produces this result.

Numerical solution of differential equations is quite easy in Maple. For
the above equation, we set up the problem with the Maple statement

sol := dsolve({diff(p(y),y$2)=(y^2-eps)*p(y), p(0)=1,D(p)(0)=0}, p(y),
type=numeric,parameters=[eps])

The term diff(p(y),y$2) is Maple notation for d2p/dy2. As this is a second
order equation we need to specify two initial conditions, so we’ve given
ψ(0) = 1 and ψ′(0) = 0 as an example here. (The Maple phrase D(p)(0)
means the first derivative of p evaluated at y = 0.)
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The we specify that the solution we want is p(y), that it should use a nu-
meric solution method, and that there is one parameter called eps. When we
enter this command into Maple it responds by defining a procedure which
it will use to calculate the solution. The procedure is named proc(x_rkf45).
The actual name isn’t important here, but the ’rk’ bit means it’s using a
Runge-Kutta method for the solution (if you’re interested).

To generate a solution, we need to provide values for all the parameters,
so we give the command

sol(parameters=[0.9])
This sets ε = 0.9. We can then determine the solution at a particular

point if we want, by calling sol(y), where y is a particular value. Maple will
produce the values of p(y) and p’(y) at that point.

For our purposes, however, we would like a plot of the solution over a
given range so that we can see whether the wave function tends to zero for
large y. Maple provides the odeplot command for this. To use it, we need
to include the plots library, so the command is

plots[odeplot](sol, [y,p(y)], -5..5)
This tells Maple to draw a plot of p(y) in the range y ∈ [−5,5].
Assuming we don’t know the correct values for ε, we need to make an

initial guess and then try to narrow it down. We also need to specify the
initial conditions for ψ and ψ′. For even functions, we know that ψ′(0) = 0
(assuming the first derivative is continuous, which is true for the harmonic
oscillator). The precise value of ψ(0) itself doesn’t really matter, as long as
it’s non-zero, since any multiple of a solution is also a solution.

For odd functions, we know ψ(0) = 0. Here, the actual value of ψ′(0)
doesn’t matter, as long as it’s non-zero.

Since the potential is even, we know that the solutions will be even or
odd. If we’re being honest and assuming that we haven’t worked out the
analytic solution, we really don’t know which energy states are even and
which are odd. For the ground state, the solution actually is even, so we
can demonstrate the technique by assuming this to start with. We’ll take
ψ(0) = 1 and ψ′(0) = 0, and try an initial value of ε = 0.9. We get the
following plot:
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As you can see, the wave function heads off to +∞ on both sides, so
ε= 0.9 isn’t a valid value. If we try ε= 1.1, we get:
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This time, the wave function goes to−∞, so we can guess that somewhere
in the middle it does tend to zero.

We can try values of ε successively closer to 1.0 on both sides and watch
what happens. For ε= 0.999 we get:
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Note the scale on the vertical axis is a lot smaller, and there is now a
noticeable bump near y = 0. For ε= 1.001, we have:



HARMONIC OSCILLATOR GROUND STATE - NUMERICAL SOLUTION 6

It still goes to −∞ but the bump around y = 0 is still there. Finally, just
to confirm the numerical method does actually work for the correct value,
we try ε= 1.0 and get:
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That looks right, so the method seems to be working.
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