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The example of a periodic function which we studied earlier had discrete

eigenvalues for both the first and second derivative of the periodic variable.
In particular, for the operator id/dφ we found that the eigenvalues are all
integers, with eigenfunctions einφ since

i
d

dφ
einφ =−neinφ (1)

This operator bears a strong resemblance to the momentum operator in
one dimension, which is p̂=−ih̄d/dx. However, if we try to find the eigen-
values and eigenfunctions of p̂, we run into a bit of a problem. We try to
solve, for some eigenvalue p:

p̂f = pf (2)

−ih̄ d
dx
f = pf (3)

This has the solution

fp(x) = Aeipx/h̄ (4)

for some constant A. Ordinarily, at this stage, we would impose some
boundary condition on the solution to obtain acceptable values of p. The
problem is that we’d like to define this function over all x and, if we try to
do this, the function is not normalizable for any value of p. At first glance,
we might think that if we chose p to be purely imaginary as in p = αi, it
might work since we get

f(x) = Ae−αx/h̄ (5)

but of course this tends to infinity at large negative x so that doesn’t work.
In fact if p has a non-zero imaginary part, f(x) goes to infinity at one end
of its domain. So we’re restricted to looking at real values of p.
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In that case, f(x) is periodic and thus is still not normalizable. Thus there
are no eigenfunctions of the momentum operator that lie in Hilbert space
(which, remember, is the vector space of square-integrable functions).

What happens if do the normalization integral anyway? That is, we try

ˆ
∞

−∞

f∗p1
(x)fp2 (x)dx= |A|

2
ˆ

∞

−∞

ei(p2−p1)x/h̄dx (6)

By using the variable transformation ξ ≡ x/h̄, we get

ˆ
∞

−∞

f∗p1
(x)fp2 (x)dx= |A|

2 h̄

ˆ
∞

−∞

ei(p2−p1)ξdξ (7)

It’s at this point that we invoke the dodgy formula involving the Dirac
delta function that we obtained a while back. Using this, we can write the
integral as a delta function, and we get

ˆ
∞

−∞

f∗p1
(x)fp2 (x)dx= 2π |A|2 h̄δ (p2−p1) (8)

This is sort of like a normalization condition, in that the integral is zero
when p1 6= p2 (that is, if you believe that the integral really does evaluate to
a delta function), and non-zero (infinite, in fact) if p1 = p2. In fact, if we
take the constant A to be

A=
1√
2πh̄

(9)

and use the bra-ket notation for the integral, we can write

〈fp1|fp2〉= δ (p2−p1) (10)

We can also express an arbitrary function g(x) as a Fourier transform
over p by writing

g(x) =

ˆ
∞

−∞

c(p)fp (x)dp (11)

=
1√
2πh̄

ˆ
∞

−∞

c(p)eipx/h̄dp (12)

g (h̄ξ) =
1√
2πh̄

ˆ
∞

−∞

c(p)eipξdp (13)

From Plancherel’s theorem, we can invert this relation to get c(p):
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c(p) =

√
h̄

2π

ˆ
∞

−∞

g (h̄ξ)e−ipξdξ (14)

=
1√
2πh̄

ˆ
∞

−∞

g (x)e−ipx/h̄dx (15)

= 〈fp|g〉 (16)

In general, hermitian operators with continuous eigenvalues don’t have
normalizable eigenfunctions and have to be analyzed in this way. In par-
ticular, the hamiltonian (energy) of a system can have an entirely discrete
spectrum (infinite square well or harmonic oscillator), a totally continuous
spectrum (free particle, delta function barrier or finite square barrier) or a
mixture of the two (delta function well or finite square well).
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