HYDROGEN ATOM - MOST PROBABLE DISTANCE OF ELECTRON

Link to: physicspages home page.
To leave a comment or report an error, please use the auxiliary blog.
Post date: 13 Jan 2013.
We worked out the mean distance of the electron from the nucleus in the hydrogen atom, but is this also the most probable distance?
The probability that the electron is found between \(r \) and \(r + dr \) in the ground state is \(|R_{10}|^2 r^2 dr = (4/a^3) e^{-2r/a} r^2 dr \). The most likely position is thus the maximum of this function which can be found by differentiation.

\[
\frac{d}{dr} \left(r^2 e^{-2r/a} \right) = 2re^{-2r/a}(1-r/a) \\
= 0 \\
r_{\text{crit}} = 0, a
\]

The value of 0 is a minimum point, so the required value is

\[
r_{\text{max}} = a
\]

For higher energy levels, we would expect the most probable distance to increase, and this is in fact true. Using the radial function for the \(n = 2, l = 1 \) state, we have

\[
R_{21}(r) = \frac{1}{\sqrt{24} a^{3/2}} r e^{-r/2a}
\]

\[
\frac{d}{dr} \left(r^2 |R_{21}|^2 \right) = \frac{1}{24a^5} e^{-r/a} \left(4 - \frac{r}{a} \right) r^3
\]

Setting this to 0 gives a triple root at \(r = 0 \) (minimum) and a single root at \(r = 4a \) (the maximum probability).