VIRIAL THEOREM IN 3-D

We’ve seen the virial theorem in one dimension, which states:

\[2\langle T \rangle = \left\langle x \frac{dV}{dx} \right\rangle \]

where \(T \) is the kinetic energy.

We can derive the 3-d version of the virial theorem using a similar method. From the formula for the rate of change of an observable, we have,

\[\frac{d}{dt} \langle r \cdot p \rangle = \frac{i}{\hbar} \langle [\hat{H}, r \cdot p] \rangle \]

assuming that the potential is time-independent. (This is what Shankar refers to as Ehrenfest’s theorem.) In three dimensions, we have

\[r \cdot p = -i\hbar x \frac{\partial}{\partial x} - i\hbar y \frac{\partial}{\partial y} - i\hbar z \frac{\partial}{\partial z} \]

\[\hat{H} = T + V \]

\[= -\frac{\hbar^2}{2m} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \right) + V \]

Since each term in the commutator (except for the potential \(V \)) contains only one of the three spatial coordinates, any derivative term commutes with any other derivative term that contains a different variable. The remaining three non-zero commutators, one for each coordinate, can be calculated in the same way as in one dimension. We are therefore left with a simple generalization of the result for one dimension.
\[
\frac{i}{\hbar} [\hat{H}, \mathbf{r} \cdot \mathbf{p}] = -\frac{\hbar^2}{m} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \right) - x \frac{\partial V}{\partial x} - y \frac{\partial V}{\partial y} - z \frac{\partial V}{\partial z}
\]

\[
d\frac{d}{dt} \langle \mathbf{r} \cdot \mathbf{p} \rangle = 2\langle T \rangle - \langle \mathbf{r} \cdot \nabla V \rangle
\]

For stationary states the time derivative is zero, so

\[
2\langle T \rangle = \langle \mathbf{r} \cdot \nabla V \rangle
\]

For hydrogen,

\[
V = -\frac{e^2}{4\pi \epsilon_0} \frac{1}{r}
\]

so since \(r = \sqrt{x^2 + y^2 + z^2} \),

\[
\frac{\partial V}{\partial x} = \frac{e^2}{4\pi \epsilon_0} \frac{x}{r^3}
\]

\[
\frac{\partial V}{\partial y} = \frac{e^2}{4\pi \epsilon_0} \frac{y}{r^3}
\]

\[
\frac{\partial V}{\partial z} = \frac{e^2}{4\pi \epsilon_0} \frac{z}{r^3}
\]

\[
\mathbf{r} \cdot \nabla V = \frac{e^2}{4\pi \epsilon_0} \frac{x^2 + y^2 + z^2}{r^3}
\]

Thus we have

\[
2\langle T \rangle = -\langle V \rangle
\]

But we know that the total energy for the hydrogen atom in quantum state \(n \) is \(E_n = \langle T \rangle + \langle V \rangle = \langle T \rangle - 2\langle T \rangle = -\langle T \rangle \) so we get \(\langle T \rangle = -E_n \) and \(\langle V \rangle = 2E_n \).

For the 3-d harmonic oscillator

\[
V = \frac{1}{2} m \omega^2 r^2
\]

so
\[\nabla V = m\omega^2 r \]
\[r \cdot \nabla V = m\omega^2 r^2 \]
\[= 2V \]

The total energy in state \(n \) is \(E_n = \langle T \rangle + \langle V \rangle = \frac{1}{2} (2 \langle V \rangle) + \langle V \rangle = 2 \langle V \rangle \) so \(\langle V \rangle = E_n/2 = \langle T \rangle \).

PINGBACKS

Pingback: Momentum space in 3-d
Pingback: Fine structure of hydrogen: relativistic correction
Pingback: runge lenz vector and closed orbits