MOMENTUM SPACE IN 3-D

We can generalize the 1-d definition of momentum space to 3-d, so the momentum space wave function is

\[\phi(p) = \frac{1}{(2\pi \hbar)^{3/2}} \int e^{-ipr/\hbar} \psi(r) \, d^3r \tag{1} \]

As an example, we can calculate this function for the ground state of hydrogen:

\[\psi_{100} = \frac{1}{\sqrt{\pi a^{3/2}}} e^{-r/a} \tag{2} \]

Since \(\psi_{100} \) is spherically symmetric, the integral above should be the same for a given magnitude \(p \) regardless of the direction of \(p \). Taking \(p \) along the polar axis means that \(p \cdot r = pr \cos \theta \), so

\[\phi(p) = \frac{1}{\sqrt{\pi a^{3/2}}(2\pi \hbar)^{3/2}} \int_{-\infty}^{\infty} \int_{0}^{\pi} \int_{0}^{2\pi} e^{-ipr \cos \theta/\hbar} e^{-r/a} \, r^2 \sin \theta \, d\theta \, dr \, d\phi \tag{3} \]

\[= \frac{1}{\pi} \left(\frac{2a}{\hbar} \right)^{3/2} \frac{1}{(1 + a^2 p^2 / \hbar^2)^2} \tag{4} \]

where we used Maple to do the integration. It would be nice to check the independence of the result on the direction of \(p \), but unfortunately, choosing any other direction gives an intractable integral. For example, if we took \(p \) to be along the \(x \) axis, so that \(p = [p, 0, 0] \), then since \(r = [x, y, z] \) we have \(r \cdot p = xp = rp \sin \theta \cos \phi \). Since this factor appears in the exponent, there’s no analytic integral that I know of as a solution.

Also, since any hydrogen wave function with a non-zero \(l \) number has a dependence on the angles \(\theta \) and \(\phi \) via the spherical harmonic, the direction of \(p \) does matter, so the calculation above doesn’t apply in those cases. The integrals, even in the case where we take \(p \) along the polar axis, are all horrible anyway, so it’s doubtful we could get a closed solution even in that special case.
To check normalization, we integrate $\phi^2(p)$ over p-space in three dimensions.

\[
\int_0^{2\pi} \int_0^\infty \int_0^{\pi} \phi^2(p)p^2 \sin \theta d\theta dp d\phi = \frac{1}{\pi^2} \left(\frac{2a}{\hbar} \right)^3 \int_0^{2\pi} \int_0^\infty \int_0^{\pi} p^2 \sin \theta d\theta dp d\phi \frac{(1 + a^2p^2/\hbar^2)^4}{(1 + a^2p^2/\hbar^2)^4}
\]

\[= 1\quad \text{(5)}\]

Again, Maple was used for the integral.

To get the mean kinetic energy, we first calculate:

\[
\langle p^2 \rangle = \int_0^{2\pi} \int_0^\infty \int_0^{\pi} \phi^2(p)p^4 \sin \theta d\theta dp d\phi
\]

\[= \frac{1}{\pi^2} \left(\frac{2a}{\hbar} \right)^3 \int_0^{2\pi} \int_0^\infty \int_0^{\pi} p^4 \sin \theta d\theta dp d\phi \frac{(1 + a^2p^2/\hbar^2)^4}{(1 + a^2p^2/\hbar^2)^4}
\]

\[= \frac{\hbar^2}{a^2}\quad \text{(8)}\]

The kinetic energy is therefore

\[
\langle T \rangle = \frac{\langle p^2 \rangle}{2m}
\]

\[= \frac{\hbar^2}{2m a^2}\quad \text{(10)}\]

\[= \left(\frac{e^2}{4\pi\varepsilon_0} \right)^2 \frac{m}{2\hbar^2}\quad \text{(12)}\]

\[= -E_1\quad \text{(13)}\]

where we’ve used the formula for the energy levels in the last line. This agrees with the result of the 3-d virial theorem.