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Following on from the post on the quantum treatment of electromagnetic
force, suppose we have a system described by the vector potential
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This question is easier if we use cylindrical coordinates. First, we convert
the vector potential into cylindrical coordinates using the transformation
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Applying this we get
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Thus the vector potential depends only on r. Applying the formula for
the curl in cylindrical coords we get
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Thus the magnetic field is constant and directed along the z axis.
The electric field is
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since A does not depend on time.

Since we are looking for stationary states, we wish to solve the Schrodinger
equation in the form HY = E'W. The Hamiltonian is given in the previous
post, so the equation to be solved is
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From above, staying in cylindrical coordinates, we have
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We therefore have the equation
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To get the angular momentum operator L, in cylindrical coordinates, we
need to write the cylindrical unit vectors in terms of rectangular coordinates

f = cosfX+sinfy (20)
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The angular momentum operator L = —iAR x V (where I've used an

uppercase R to represent the vector from the origin to the observation point,
to distinguish it from the r in cylindrical coordinates). We have

R=rt+2Z (23)
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and the gradient is
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We can therefore write [19] as
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Since L, commutes with H, we can choose W to be an eigenfunction of
both L, and H. The eigenvalues of L, are im_, where m, is an integer, so
we can write 28] as
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Rearranging to put the constant coefficients on the RHS we get
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To solve this, we use separation of variables so that
Y(r,0,z) = R(r)®(0)Z(z) (33)

We then get, after dividing through by R(r)®(0)Z(z) and separating into
two equations, one for 7 and one for z:
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Equation [35]has the same form as a harmonic oscillator, so we know that
the energy levels are
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where the angular frequency is
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To solve [34] we can resort to a series solution in the same way as we
solved the harmonic oscillator originally. Multiplying through by —2m/ h?
we have
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First, we define the variable p = r+/qBy/2h = rx. Making this substitu-
tion converts the equation to
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Using the same analysis as in the harmonic oscillator case, we look at the
behaviour of this equation for large p and observe that

R"~ p’R (42)
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so we can try factoring out a term e~” /2 to get R(p) = s(p)e~* /2 for some
function s(p) to be determined. We then get for the derivatives
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Substituting these back into the original equation gives us an equation in
the function s(r).
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We now propose a series solution:
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Inserting these into 45 and equating terms for each power of p gives
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For large j this has the asymptotic form c;4> ~ 2c¢;/j so to keep the
solution finite, the series must terminate, so for some value of ; we must
have
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Since [51]is a recursion relation for every second coefficient, the only way
the series can terminate is if either co = 0 or ¢; = 0. If ¢; = 0 then all the js
are even and from [36|and [37|the total energy is

The total energy is therefore
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I’m not entirely satisfied with this solution, since there’s no obvious rea-
son why we should exclude the odd j series. Also, it appears that n, is
restricted only to half-integer values, since m, is an integer and even if j is
even, j —m, can be either even or odd.



