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Following on from the post on the quantum treatment of electromagnetic

force, suppose we have a system described by the vector potential

A =
B0

2
(
xĵ−yî

)
(1)

and the scalar potential

ϕ=Kz2 (2)
This question is easier if we use cylindrical coordinates. First, we convert

the vector potential into cylindrical coordinates using the transformation

î = r̂cosθ− θ̂ sinθ (3)
ĵ = r̂sinθ+ θ̂ cosθ (4)
k̂ = ẑ (5)

Applying this we get

A =
B0

2
rθ̂ (6)

Thus the vector potential depends only on r. Applying the formula for
the curl in cylindrical coords we get

B = ∇×A (7)
= B0ẑ (8)

Thus the magnetic field is constant and directed along the z axis.
The electric field is

E = −∇ϕ− ∂A
∂t

(9)

= −2Kzẑ (10)
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since A does not depend on time.
Since we are looking for stationary states, we wish to solve the Schrödinger

equation in the form HΨ = EΨ. The Hamiltonian is given in the previous
post, so the equation to be solved is

1
2m

(
−h̄2

∇
2
Ψ+

h̄q

−i
(2A ·∇Ψ+Ψ∇ ·A)+ q2|A|2Ψ

)
+ qϕΨ = EΨ (11)

From above, staying in cylindrical coordinates, we have

∇
2
Ψ =

1
r

∂

∂r

(
r
∂Ψ

∂r

)
+

1
r2
∂2Ψ

∂θ2 +
∂2Ψ

∂z2 (12)

=
∂2Ψ

∂r2 +
1
r

∂Ψ

∂r
+

1
r2
∂2Ψ

∂θ2 +
∂2Ψ

∂z2 (13)

A ·∇Ψ =
B0r

2
1
r

∂Ψ

∂θ
(14)

=
B0

2
∂Ψ

∂θ
(15)

∇ ·A = 0 (16)

|A|2 =
B2

0
4
r2 (17)

We therefore have the equation

− h̄2

2m

[
∂2Ψ

∂r2 +
1
r

∂Ψ

∂r
+

1
r2
∂2Ψ

∂θ2 +
∂2Ψ

∂z2

]
+ (18)

ih̄qB0

2m
∂Ψ

∂θ
+
q2B2

0
8m

r2
Ψ+ qKz2

Ψ = EΨ (19)

To get the angular momentum operator Lz in cylindrical coordinates, we
need to write the cylindrical unit vectors in terms of rectangular coordinates

r̂ = cosθx̂+ sinθŷ (20)
θ̂ = −sinθx̂+ cosθŷ (21)
ẑ = ẑ (22)

The angular momentum operator L = −ih̄R×∇ (where I’ve used an
uppercase R to represent the vector from the origin to the observation point,
to distinguish it from the r in cylindrical coordinates). We have

R = rr̂+ zẑ (23)
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and the gradient is

∇ = r̂
∂

∂r
+ θ̂

1
r

∂

∂θ
+ ẑ

∂

∂z
(24)

Therefore

Lz = [−ih̄R×∇]z (25)

= −ih̄ ∂
∂θ

(26)

We can therefore write 19 as

− h̄2

2m

[
∂2Ψ

∂r2 +
1
r

∂Ψ

∂r
+
∂2Ψ

∂z2

]
+

L2
z

2mr2 Ψ− (27)

qB0

2m
LzΨ+

q2B2
0

8m
r2

Ψ+ qKz2
Ψ = EΨ (28)

Since Lz commutes with H , we can choose Ψ to be an eigenfunction of
both Lz and H . The eigenvalues of Lz are h̄mz where mz is an integer, so
we can write 28 as

− h̄2

2m

[
∂2Ψ

∂r2 +
1
r

∂Ψ

∂r
+
∂2Ψ

∂z2

]
+
h̄2m2

z

2mr2 Ψ− (29)

h̄qB0

2m
mzΨ+

q2B2
0

8m
r2

Ψ+ qKz2
Ψ = EΨ (30)

Rearranging to put the constant coefficients on the RHS we get

− h̄2

2m

[
∂2Ψ

∂r2 +
1
r

∂Ψ

∂r
+
∂2Ψ

∂z2

]
+
h̄2m2

z

2mr2 Ψ (31)

+
q2B2

0
8m

r2
Ψ+ qKz2

Ψ =

(
E+

h̄qB0

2m
mz

)
Ψ (32)

To solve this, we use separation of variables so that

Ψ(r,θ,z)≡R(r)Θ(θ)Z(z) (33)

We then get, after dividing through byR(r)Θ(θ)Z(z) and separating into
two equations, one for r and one for z:
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− h̄2

2m

[
R′′+

1
r
R′−m

2
z

r2 R

]
+
q2B2

0
8m

r2R = ErR (34)

− h̄2

2m
Z ′′+ qKz2Z = EzZ (35)

where

Er+Ez = E+
h̄qB0

2m
mz (36)

Equation 35 has the same form as a harmonic oscillator, so we know that
the energy levels are

Ez =

(
nz+

1
2

)
h̄ωz (37)

where the angular frequency is

ωz ≡
√

2qK
m

(38)

To solve 34, we can resort to a series solution in the same way as we
solved the harmonic oscillator originally. Multiplying through by −2m/h̄2

we have

R′′+
1
r
R′−m

2
z

r2 R−
q2B2

0

4h̄2 r
2R=−2mEr

h̄2 R (39)

First, we define the variable ρ≡ r
√
qB0/2h̄≡ rx. Making this substitu-

tion converts the equation to

x2R′′+
x2

ρ
R′−x2m

2
z

ρ2 R−x
2ρ2R = −2mEr

h̄2 R (40)

R′′+
1
ρ
R′−m

2
z

ρ2 R−ρ
2R = −4mEr

qB0h̄
R (41)

Using the same analysis as in the harmonic oscillator case, we look at the
behaviour of this equation for large ρ and observe that

R′′ ≈ ρ2R (42)

so we can try factoring out a term e−ρ
2/2 to get R(ρ) = s(ρ)e−ρ

2/2 for some
function s(ρ) to be determined. We then get for the derivatives
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R′ = s′e−ρ
2/2−ρse−ρ

2/2 (43)

R′′ = s′′e−ρ
2/2−2ρs′e−ρ

2/2 +(ρ2−1)se−ρ
2/2 (44)

Substituting these back into the original equation gives us an equation in
the function s(r).

s′′−
(

2ρ+
1
ρ

)
s′−2s−m

2
z

ρ2 s=−
4m
qB0h̄

Ers (45)

We now propose a series solution:

s(ρ) =
∞

∑
j=0

cjρ
j (46)

s′(ρ) =
∞

∑
j=0

jcjρ
j−1 (47)

s′′(ρ) =
∞

∑
j=0

j(j−1)cjρj−2 (48)

Inserting these into 45 and equating terms for each power of ρ gives

[
(j+2)(j+1)+(j+2)−m2

z

]
cj+2−2(j+1)cj =−

4m
qB0h̄

Ercj (49)[
(j+2)2−m2

z

]
cj+2−2(j+1)cj =−

4m
qB0h̄

Ercj (50)

This gives the recursion relation

cj+2 =
2(j+1)− 4m

qB0h̄
Er

(j+2)2−m2
z

cj (51)

For large j this has the asymptotic form cj+2 ∼ 2cj/j so to keep the
solution finite, the series must terminate, so for some value of j we must
have

Er =
qB0h̄

m

(j+1)
2

(52)

Since 51 is a recursion relation for every second coefficient, the only way
the series can terminate is if either c0 = 0 or c1 = 0. If c1 = 0 then all the js
are even and from 36 and 37 the total energy is

The total energy is therefore
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E = Ez+Er−
h̄qB0

2m
mz (53)

=

(
nz+

1
2

)
h̄ωz+ h̄ωr

(
nr+

1
2

)
(54)

nr =
j−mz

2
(55)

ωz =
√

2qK/m (56)
ωr = qB0/m (57)

I’m not entirely satisfied with this solution, since there’s no obvious rea-
son why we should exclude the odd j series. Also, it appears that nr is
restricted only to half -integer values, since mz is an integer and even if j is
even, j−mz can be either even or odd.


