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We’ve seen that distinguishable particles and identical particles must be

treated differently in quantum mechanics, resulting in different combina-
tions of the single-particle wave functions in 2-particle systems. It’s useful
to work out what this means for some of the observables in a 2-particle
system.

We can begin by looking at possibly the simplest case: the average posi-
tions of the two particles. If the particles are distinguishable, then the wave
function is ψ(xa,xb) = ψ1 (xa)ψ2 (xb) and

〈xa〉= 〈ψ |xa|ψ〉 (1)

= 〈ψ1a |xa|ψ1a〉〈ψ2b|ψ2b〉 (2)

= 〈ψ1a |xa|ψ1a〉 (3)

= 〈x〉1 (4)

where the notation |ψ1a〉 ≡ ψ1 (xa) and so on.
That is, 〈x〉 is the mean value of x in state ψ1. We can drop the suffix a here,
since xa is just a dummy name for the integration variable in 〈ψ1a |xa|ψ1a〉.

For identical particles,

ψ± (ra,rb) =
1√
2
[ψ1 (ra)ψ2 (rb)±ψ2 (ra)ψ1 (rb)] (5)

This time, working out 〈xa〉 is a bit messier but not too bad if we use the
orthogonality of the two states.

2〈xa〉= 〈ψ1a |xa|ψ1a〉〈ψ2b|ψ2b〉+ 〈ψ2a |xa|ψ2a〉〈ψ1b|ψ1b〉 (6)

±〈ψ1a |xa|ψ2a〉〈ψ2b|ψ1b〉±〈ψ2a |xa|ψ1a〉〈ψ1b|ψ2b〉 (7)

〈xa〉=
1
2
(〈x〉1 + 〈x〉2) (8)

Thus the mean position of particle a is the average of its positions in
the two states, which isn’t all that surprising. We’d get the same result for
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particle b of course, since the two particles are identical. This result is true
for both bosons and fermions, since the plus/minus terms work out to zero
due to the orthogonality of the states ψ1 and ψ2.

What is a bit more interesting is the mean square separation of the two
particles, that is

〈
(xa−xb)2

〉
. This can be worked out using the same pro-

cedure as above, and is done by Griffiths in his section 5.1.2, although his
notation is a bit different from mine. (I’ve used a numerical suffix on the
wave function, since this is the usual notation used for stationary states.
Thus a letter suffix indicates which particle and a number suffix indicates
which stationary state.) The results are, in my notation, first for distinguish-
able particles:

〈
(xa−xb)2

〉
=
〈
x2〉

1 +
〈
x2〉

2−2〈x〉1 〈x〉2 (9)

For identical particles, we get

〈
(xa−xb)2

〉
±
=
〈
x2〉

1 +
〈
x2〉

2−2〈x〉1 〈x〉2∓2 |〈x〉12|
2 (10)

where the plus (minus) sign on the left and minus (plus) on the right refer
to bosons (fermions), and

〈x〉12 ≡ 〈ψ1 |x |ψ2〉 (11)

In general, then, since the term 2 |〈x〉12|
2 is always positive, bosons tend

to be closer together than distinguishable particles while fermions are fur-
ther apart. This is a sort of pseudo-force which is an entirely quantum me-
chanical effect of the symmetries of the wave functions. Although it’s not
really a force in the sense that electromagnetism and gravity are, it’s known
as the exchange force.

As an example, consider 2 particles in the infinite square well. The wave
functions for a single particle are

ψ (x) =

√
2
a

sin
nπx

a
(12)

where a is the width of the well. If the total wave function is a combination
of states l and n, then if the particles are distinguishable
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〈
(xa−xb)2

〉
=
〈
x2〉

1 +
〈
x2〉

2−2〈x〉1 〈x〉2 (13)

= a2
(

1
3
− 1

2l2π2

)
+a2

(
1
3
− 1

2n2π2

)
−2
(a

2

)(a
2

)
(14)

= a2
(

1
6
− l2 +n2

2(πln)2

)
(15)

In line 2, we used the results of our earlier calculations for the infinite
square well.

If the particles are identical, then

〈x〉ln = 〈ψl |x |ψn〉 (16)

=
2
a

ˆ a

0
sin
(
lπx

a

)
sin
(nπx

a

)
xdx (17)

=
(
−1+(−1)n+l

) 4anl

[π (n2− l2)]2
(18)

This term is zero if n+ l is even, so there is a difference in the separation
only when n+ l is odd. In general, we have

〈
(xa−xb)2

〉
±
= a2

(
1
6
− l2 +n2

2(πln)2

)
∓2

[(
−1+(−1)n+l

) 4anl

[π (n2− l2)]2

]2

(19)
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