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We’ve seen the distribution of particles for the most probable state in the
cases of distinguishable particles| and fermions| so to complete the set we
need to look at bosons. Following the same technique as in the other two
cases, we start with the total number of states for bosons:
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Taking the log of this and using Lagrange multipliers to add in the con-
straints, we get the function
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Using Stirling’s approximation again we get
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We can now take the derivative to get n;:
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Since d; > 1 (usually), we can safely drop the —1 in the numerator to
get the number distribution for bosons:
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At this stage, we can try to find a and 3 by evaluating the total number of

particles and the total energy for a particular potential, such as the infinite
square well. Using the same technique as before, we get
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This integral does not appear to have a closed form, even if we try to find
some special functions. If we use the same definitions for o and 3 as before,

we get
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We can use this formula to derive a few conclusions. First, since the
integrand is the product of two quantities (number at energy level k& and
degeneracy), the integrand must always be non-negative. This means that
the exponent in the denominator must be non-negative, so
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for all possible values of k. Since y is a constant for given values of N, V'

and 7, it must be less than the minimum energy in the system.

For the ideal gas, the minimum energy is zero, so p < 0 for all values
of N, V. and T. If N and V are fixed, then from the integral must
remain constant as 7" is varied. This means that, for a given value of £k,
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(hzkz /2m — u) /kpT must remain constant as 7" varies. In particular, as
T decreases, h’k> /2m — p must also decrease and since p < 0, this means
that © must increase towards zero.
The condition is, for a function A (k):
h2k?

= —A®R) kBT = pu(T) (14)

That is, A depends only on k and p depends only on 7. Since the LHS
must always be less than zero, there is a critical temperature 7, where the
LHS becomes zero, which occurs at
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Of course, we can’t use this formula to determine 7. because we don’t
know A (k). However, we can try to do the integral above in the special
case where 1 = 0. That is, we have
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Using Maple, the integral comes out to
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where ( is the Riemann zeta function. Solving for 7, we get
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For liquid “He the mass density is 150 kg m~3 which gives it a number
density of
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Plugging in the numbers then gives
T.=321K (20)

The experimental value is 7. = 2.17 K and at this point, helium becomes
a superfluid. The phenomenon that occurs at the critical temperature is
known as Bose condensation. The ideal gas model cannot, of course, ex-
plain superfluidity, but it’s interesting that we can predict the existence of a
critical temperature even in this simple model.
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