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We’ve seen the distribution of particles for the most probable state in the

cases of distinguishable particles and fermions so to complete the set we
need to look at bosons. Following the same technique as in the other two
cases, we start with the total number of states for bosons:

Sb ({nj}) =
m

∏
j=1

(
nj+dj−1

nj

)
(1)

Taking the log of this and using Lagrange multipliers to add in the con-
straints, we get the function

G= lnSb+α

(
N −

∞

∑
j=1

nj

)
+β

(
E−

∞

∑
j=1

njEj

)
(2)

=
∞

∑
j=1

[ln(nj+dj−1)!− lnnj!− ln(dj−1)!−αnj−βnjEj ]+αN +βE

(3)

Using Stirling’s approximation again we get

G≈
∞

∑
j=1

[(nj+dj−1) ln(nj+dj−1)− (nj+dj−1)−nj lnnj+nj− ln(dj−1)!−αnj−βnjEj ]+αN+βE

(4)
We can now take the derivative to get nj :
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∂G

∂nj
= ln(nj+dj−1)− lnnj−α−βEj = 0 (5)

nj = (nj+dj−1)e−α−βEj (6)

nj =
(dj−1)e−α−βEj

1− e−α−βEj
(7)

=
dj−1

eα+βEj −1
(8)

Since dj � 1 (usually), we can safely drop the −1 in the numerator to
get the number distribution for bosons:

nj =
dj

eα+βEj −1
(9)

At this stage, we can try to find α and β by evaluating the total number of
particles and the total energy for a particular potential, such as the infinite
square well. Using the same technique as before, we get

N =

ˆ
∞

0

d(k)

eα+βEj −1
dk (10)

=
V

2π2

ˆ
∞

0

k2

eα+h̄
2k2β/2m−1

dk (11)

This integral does not appear to have a closed form, even if we try to find
some special functions. If we use the same definitions for α and β as before,
we get

N =
V

2π2

ˆ
∞

0

k2

e(h̄
2k2/2m−µ)/kBT −1

dk (12)

We can use this formula to derive a few conclusions. First, since the
integrand is the product of two quantities (number at energy level k and
degeneracy), the integrand must always be non-negative. This means that
the exponent in the denominator must be non-negative, so

µ <
h̄2k2

2m
(13)

for all possible values of k. Since µ is a constant for given values of N , V
and T , it must be less than the minimum energy in the system.

For the ideal gas, the minimum energy is zero, so µ < 0 for all values
of N , V and T . If N and V are fixed, then from 12, the integral must
remain constant as T is varied. This means that, for a given value of k,
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h̄2k2/2m−µ

)
/kBT must remain constant as T varies. In particular, as

T decreases, h̄2k2/2m−µ must also decrease and since µ < 0, this means
that µ must increase towards zero.

The condition is, for a function A(k):

h̄2k2

2m
−A(k)kBT = µ(T ) (14)

That is, A depends only on k and µ depends only on T . Since the LHS
must always be less than zero, there is a critical temperature Tc where the
LHS becomes zero, which occurs at

Tc =
h̄2k2

2mA(k)kB
(15)

Of course, we can’t use this formula to determine Tc because we don’t
know A(k). However, we can try to do the integral above in the special
case where µ= 0. That is, we have

2π2N

V
=

ˆ
∞

0

k2

eh̄
2k2/2mkBTc−1

dk (16)

Using Maple, the integral comes out to
ˆ

∞

0

k2

eh̄
2k2/2mkBTc−1

dk = (mkBTc)
3/2
√
π√

2h̄3 ζ

(
3
2

)
(17)

where ζ is the Riemann zeta function. Solving for Tc we get

Tc =
2πh̄2

mkB

(
N

V ζ
(3

2

))2/3

(18)

For liquid 4He the mass density is 150 kg m−3 which gives it a number
density of

N

V
=

150
6.645×10−27 = 2.2573×1028 m−3 (19)

Plugging in the numbers then gives

Tc = 3.21 K (20)
The experimental value is Tc = 2.17 K and at this point, helium becomes

a superfluid. The phenomenon that occurs at the critical temperature is
known as Bose condensation. The ideal gas model cannot, of course, ex-
plain superfluidity, but it’s interesting that we can predict the existence of a
critical temperature even in this simple model.
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