HARMONIC OSCILLATOR: FIRST ORDER PERTURBATION

Link to: [physicspages home page](#).
To leave a comment or report an error, please use the auxiliary blog.
Post date: 26 Jul 2013.

This is a simple example of applying first order perturbation theory to the harmonic oscillator. The energy levels of an unperturbed oscillator are

\[E_{n0} = \left(n + \frac{1}{2} \right) \hbar \omega \]

where \(\omega = \sqrt{\frac{k}{m}} \) and the potential is \(V = \frac{1}{2} k x^2 \). If we perturb the potential by changing \(k \) slightly, so the new potential is

\[V' = \frac{1}{2} (1 + \epsilon) k x^2 \]

then, of course, it’s easy to find the exact energy levels just by changing \(k \) in the original formula:

\[E_n = \left(n + \frac{1}{2} \right) \hbar \omega' = \left(n + \frac{1}{2} \right) \hbar \sqrt{\frac{k (1 + \epsilon)}{m}} \]

We can expand the square root in a power series:

\[E_n = \left(n + \frac{1}{2} \right) \hbar \sqrt{\frac{k}{m}} \left[1 + \frac{\epsilon}{2} - \frac{\epsilon^2}{8} + \ldots \right] \]

From first order perturbation theory, the change to the energy is (since the perturbation in the potential here is \(V' - V = \frac{1}{2} \epsilon k x^2 = \epsilon V \)):

\[E_{n1} = \langle n0 | \epsilon V | n0 \rangle \]

We could do the integral implied here, but we’ve already worked out the mean value of the potential for the harmonic oscillator using the virial theorem, and we know that \(\langle V \rangle = \langle T \rangle = E_n/2 \) so
$E_{n1} = \frac{\epsilon}{2} E_{n0}$ \hspace{1cm} (7)

$= \frac{\epsilon}{2} \left(n + \frac{1}{2} \right) \hbar \sqrt{\frac{k}{m}}$ \hspace{1cm} (8)

This is the first order term in ϵ in the series expansion above.

PINGBACKS

Pingback: Second order non-degenerate perturbation theory