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This is a simple example of applying first order perturbation theory to the

harmonic oscillator. The energy levels of an unperturbed oscillator are

En0 =
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)
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where ω =
√

k/m and the potential is V = 1
2kx2. If we perturb the potential

by changing k slightly, so the new potential is

V ′ =
1
2
(1+ ε)kx2 (2)

then, of course, it’s easy to find the exact energy levels just by changing k
in the original formula:
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We can expand the square root in a power series:
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From first order perturbation theory, the change to the energy is (since
the perturbation in the potential here is V ′−V = 1

2εkx2 = εV ):

En1 = 〈n0|εV |n0〉 (6)

We could do the integral implied here, but we’ve already worked out
the mean value of the potential for the harmonic oscillator using the virial
theorem, and we know that 〈V 〉= 〈T 〉= En/2 so
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This is the first order term in ε in the series expansion above.
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