DEGENERATE PERTURBATION IN 3 STATE SYSTEM

Here’s another example of multiple degenerate perturbation theory. This time, the system has only 3 linearly independent states, with the Hamiltonian given by

\[
H = V_0 \begin{bmatrix}
1 & -\epsilon_0 & 0 \\
0 & 1 & \epsilon \\
0 & \epsilon_0 & 2
\end{bmatrix}
\]

(1)

where \(\epsilon \ll 1 \) and can be regarded as a perturbation. The unperturbed Hamiltonian is then

\[
H = V_0 \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{bmatrix}
\]

(2)

and has one state with energy \(2V_0 \) and a two-fold degenerate state with energy \(V_0 \). The normalized eigenvectors are

\[
\begin{bmatrix}
1 \\
0 \\
0
\end{bmatrix}, \begin{bmatrix}
0 \\
1 \\
0
\end{bmatrix}, \begin{bmatrix}
0 \\
0 \\
1
\end{bmatrix}
\]

(3)

In this case, we can solve the perturbed system exactly by finding the eigenvalues of the full matrix from the equation

\[
(1 - \epsilon - \lambda) [(1 - \lambda)(2 - \lambda) - \epsilon^2] = 0
\]

(4)

The solutions of this equation are

\[
\lambda = \begin{cases}
1 - \epsilon \\
\frac{1}{2} + \frac{1}{2}\sqrt{1 + 4\epsilon^2} \\
\frac{1}{2} - \frac{1}{2}\sqrt{1 + 4\epsilon^2}
\end{cases}
\]

(5)

so the three energies are \(V_0\lambda \). We can expand the square root in the last two energies in a Taylor series in \(\epsilon^2 \) using \(\sqrt{1 + 4\epsilon^2} = 1 + 2\epsilon^2 + O(\epsilon^4) \) so we get
DEGENERATE PERTURBATION IN 3 STATE SYSTEM

\[E_\epsilon = \begin{cases}
V_0 (1 - \epsilon) \\
V_0 (2 + \epsilon^2 + O(\epsilon^4)) \\
V_0 (1 - \epsilon^2 + O(\epsilon^4))
\end{cases} \quad (6) \]

We can see that two of these energies are perturbations on the original degenerate state with \(E_0 = V_0 \) and the third is a perturbation on \(E_0 = 2V_0 \).

We can now analyze the system using perturbation theory and compare the results with the exact solutions above. The perturbation is

\[V = V_0 \begin{bmatrix} -\epsilon & 0 & 0 \\
0 & 0 & \epsilon \\
0 & \epsilon & 0 \end{bmatrix} \quad (7) \]

Since the unperturbed state with \(E_0 = 2V_0 \) is non-degenerate, we can use [non-degenerate perturbation theory] to find the change in energy. The state corresponding to this energy is given by the eigenvector \(\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \), so the energy perturbation is given by

\[E_1 = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} V_0 \begin{bmatrix} -\epsilon & 0 & 0 \\
0 & 0 & \epsilon \\
0 & \epsilon & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = 0 \quad (8) \]

This is consistent with the result above, since there is no first order term in \(V_0 \left(2 + \epsilon^2 + O(\epsilon^4) \right) \). We can work out the second order correction using our earlier formula:

\[E_{n2} = \sum_{j \neq n} \frac{|\langle j | V | n \rangle|^2}{E_{n0} - E_{j0}} \quad (9) \]

For this, we need the off-diagonal matrix elements. If we number the eigenvectors of the unperturbed system above in order, then the \(E_0 = 2 \) state has \(n = 3 \), so we need

\[\langle 20 | V | 30 \rangle = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix} V_0 \begin{bmatrix} -\epsilon & 0 & 0 \\
0 & 0 & \epsilon \\
0 & \epsilon & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \epsilon V_0 \quad (10) \]

\[\langle 10 | V | 30 \rangle = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} V_0 \begin{bmatrix} -\epsilon & 0 & 0 \\
0 & 0 & \epsilon \\
0 & \epsilon & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = 0 \quad (11) \]

Since \(E_{3,0} - E_{j,0} = V_0 \) for \(j = 1, 2 \) we get
DEGENERATE PERTURBATION IN 3 STATE SYSTEM

\[E_{3,2} = \left| \frac{\langle 20 | V | 30 \rangle}{V_0} \right|^2 = V_0 \epsilon^2 \] \hspace{1cm} (12)

This correction term matches the \(\epsilon^2 \) term in the expansion above: \(V_0 \left(2 + \epsilon^2 + \mathcal{O} (\epsilon^4) \right) \).

For the degenerate energy \(E_0 = V_0 \), we can use degenerate perturbation theory, but only up to first order since we haven’t worked out the higher order cases. In this case, the matrix \(W \) is a \(2 \times 2 \) matrix, since the unperturbed state is only doubly degenerate. We get

\[
W_{11} = \langle 10 | V | 10 \rangle = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} V_0 \begin{bmatrix} \epsilon^2 & 0 & 0 \\ 0 & 0 & \epsilon \\ 0 & \epsilon & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = -\epsilon V_0 \hspace{1cm} (13)
\]

\[
W_{21} = W_{12} = \langle 10 | V | 20 \rangle = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} V_0 \begin{bmatrix} \epsilon^2 & 0 & 0 \\ 0 & 0 & \epsilon \\ 0 & \epsilon & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = 0 \hspace{1cm} (14)
\]

\[
W_{22} = \langle 20 | V | 20 \rangle = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix} V_0 \begin{bmatrix} \epsilon^2 & 0 & 0 \\ 0 & 0 & \epsilon \\ 0 & \epsilon & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = 0 \hspace{1cm} (15)
\]

\[
W = \begin{bmatrix} -\epsilon V_0 & 0 \\ 0 & 0 \end{bmatrix} \hspace{1cm} (16)
\]

Thus, to first order, one state gets an adjustment to the energy of \(-\epsilon V_0 \) and the other gets zero, which is consistent with the exact results above, since there is no first order term in \(V_0 \left(1 - \epsilon^2 + \mathcal{O} (\epsilon^4) \right) \). Since \(W \) is diagonal, the special states are just the original states.