FINE STRUCTURE OF HYDROGEN: DIRAC FORMULA

Link to: [physicspages home page.](link)
To leave a comment or report an error, please use the auxiliary blog.
Post date: 20 Aug 2013.

The fine structure of hydrogen as worked out from applying relativistic and spin-orbit coupling corrections using perturbation theory gives a formula for the energy levels as follows:

\[
E_{nj} = E_{n0} \left[1 - \frac{\alpha^2}{4n^2} \left(3 - \frac{4n}{j + \frac{1}{2}} \right) \right]
\]

\[
= -\frac{13.6 \text{ eV}}{n^2} \left[1 - \frac{\alpha^2}{4n^2} \left(3 - \frac{4n}{j + \frac{1}{2}} \right) \right]
\]

If the hydrogen atom is analyzed using the relativistic Dirac equation (which we’ll hopefully get to one day :)), we can get an exact formula for the energy levels:

\[
E_{nj} = mc^2 \left[1 + \left(\frac{\alpha}{n - j - \frac{1}{2} + \sqrt{(j + \frac{1}{2})^2 - \alpha^2}} \right) \right]^{-1/2} - 1 \]

(3)

Here \(n \) is the principal quantum number, \(j \) is the total angular momentum quantum number and \(\alpha \) is the fine structure constant. We can expand this in a Taylor series in \(\alpha \). The derivatives are tedious and can be done using Maple, with the result

\[
E_{nj} = \frac{-1}{2} \frac{mc^2}{n^2} \alpha^2 - \frac{1}{8} \frac{mc^2}{(1+2j)n^4} (8n-6j-3) \alpha^4 + \mathcal{O}(\alpha^6)
\]

(4)

We can write the unperturbed energy \(E_{n0} \) in terms of \(\alpha \):

\[
E_n = -\frac{m}{2n^2} \left(\frac{e^2}{4\pi\epsilon_0\hbar} \right)^2 = -\frac{1}{2n^2} \alpha^2 mc^2
\]

(5)

Using this, we can write out the expansion as
Thus the first two non-zero terms in the Taylor expansion of the Dirac formula give us the formula using perturbation theory in the non-relativistic analysis.