A useful theorem known as the Feynman-Hellmann theorem can be derived as follows. Suppose that the hamiltonian of a quantum system is a function of some parameter \(\lambda \). Then we can write a Taylor series:

\[
H(\lambda + \Delta \lambda) = H(\lambda) + \frac{\partial H}{\partial \lambda} \Delta \lambda + \ldots
\]

(1)

If the second term is small, we can treat it as a perturbation on \(H(\lambda) \) so if the wave function is non-degenerate, or a 'good' linear combination of degenerate states, we have

\[
E_{n1} = E_{n0} + \Delta E
\]

\[
= \langle \psi_n \left| \frac{\partial H}{\partial \lambda} \Delta \lambda \right| \psi_n \rangle
\]

(2)

\[
\frac{E_{n0} + \Delta E}{\Delta \lambda} = \langle \psi_n \left| \frac{\partial H}{\partial \lambda} \right| \psi_n \rangle
\]

(3)

Taking the limit as \(\Delta \lambda \to 0 \) we get

\[
\frac{\partial E}{\partial \lambda} = \langle \psi_n \left| \frac{\partial H}{\partial \lambda} \right| \psi_n \rangle
\]

(4)

The parameter \(\lambda \) can be any quantity that appears in the hamiltonian, even physical constants such as \(\hbar \). As an example, we can look again at the 1-d harmonic oscillator:

\[
H = -\frac{\hbar^2}{2m} \frac{d^2}{dx^2} + \frac{m\omega^2}{2} x^2
\]

(5)

\[
E_n = \left(n + \frac{1}{2} \right) \hbar \omega
\]

(6)

First, we take \(\lambda = \omega \):
FEYNMAN-HELLMANN THEOREM AND THE HARMONIC OSCILLATOR

\[
\frac{\partial E_n}{\partial \omega} = \langle \psi_n \big| \frac{\partial H}{\partial \omega} \big| \psi_n \rangle \\
= \langle \psi_n \big| m\omega^2 \big| \psi_n \rangle \\
= \frac{2}{\omega} \langle V \rangle
\]

From the energy expression, we have

\[
\frac{\partial E_n}{\partial \omega} = \left(n + \frac{1}{2} \right) \hbar
\]

Putting them together we get

\[
\langle V \rangle = \frac{1}{2} \left(n + \frac{1}{2} \right) \hbar \omega = \frac{E_n}{2}
\]

This agrees with the virial theorem result \(\langle T \rangle = \langle V \rangle = \frac{E_n}{2} \).

Second, we’ll try \(\lambda = \hbar \):

\[
\frac{\partial E_n}{\partial \hbar} = \langle \psi_n \big| \frac{\partial H}{\partial \hbar} \big| \psi_n \rangle \\
= -\langle \psi_n \big| \frac{\hbar}{m} \frac{d^2}{dx^2} \big| \psi_n \rangle \\
= \frac{2}{\hbar} \langle T \rangle
\]

From the energy expression, we have

\[
\frac{\partial E_n}{\partial \hbar} = \left(n + \frac{1}{2} \right) \omega
\]

Putting them together we get

\[
\langle T \rangle = \frac{1}{2} \left(n + \frac{1}{2} \right) \hbar \omega = \frac{E_n}{2}
\]

which again agrees with the virial theorem.

Finally, we’ll try \(\lambda = m \):
\[\frac{\partial E_n}{\partial \hbar} = \langle \psi_n \mid \frac{\partial H}{\partial \hbar} \mid \psi_n \rangle \]
(18)

\[= \frac{\hbar^2}{2m^2} \langle \psi_n \mid \frac{d^2}{dx^2} \mid \psi_n \rangle + \frac{\omega^2}{2} \langle \psi_n \mid x^2 \mid \psi_n \rangle \]
(19)

\[= - \frac{1}{m} \langle T \rangle + \frac{1}{m} \langle V \rangle \]
(20)

From the energy expression, we have

\[\frac{\partial E_n}{\partial m} = 0 \]
(21)

which leads to \(\langle T \rangle = \langle V \rangle \), again in agreement with the virial theorem.

Pingbacks

Pingback: Feynman-Hellmann theorem: hydrogen atom mean values
Pingback: Kramers’s relation: application to hydrogen mean values