VARIATIONAL PRINCIPLE AND THE DELTA FUNCTION WELL

Here’s another example of the variational principle, this time applied to the delta function well. We use a normalized function \(\psi \) as a test function for the hamiltonian \(H \) and get an upper bound on the ground state energy \(E_0 \):

\[
E_0 \leq \langle \psi | H | \psi \rangle \equiv \langle H \rangle
\]

(1)

In this case, the potential is given by

\[
V(x) = -\alpha \delta(x)
\]

(2)

and we’ll take as the test function

\[
\psi = \begin{cases}
0 & x < -a \\
A(x+a) & -a \leq x < 0 \\
A(-x+a) & 0 \leq x < a \\
0 & x \geq a
\end{cases}
\]

(3)

where \(A \) and \(a \) are parameters.

We can find \(A \) from normalization:

\[
|A|^2 \left[\int_{-a}^{0} (x+a)^2 \, dx + \int_{0}^{a} (-x+a)^2 \, dx \right] = 1
\]

(4)

\[
\frac{2}{3} |A|^2 a^3 = 1
\]

(5)

\[
A = \frac{\sqrt{6}}{2a^{3/2}}
\]

(6)

To calculate \(\langle H \rangle \), we need the second derivative of \(\psi \), so we have
\begin{equation}
\frac{d\psi}{dx} = \begin{cases}
0 & x < -a \\
A & -a \leq x < 0 \\
-A & 0 \leq x < a \\
0 & x \geq a
\end{cases}
\end{equation}

For the second derivative, we need the derivative of the step function, which is a delta function, so we get

\begin{equation}
\frac{d^2\psi}{dx^2} = A\delta(x+a) - 2A\delta(x) + A\delta(x-a)
\end{equation}

Following the usual procedure and using (2), we get:

\begin{equation}
\langle H \rangle = -\frac{\hbar^2 A}{2m} \int_{-a}^{a} [\delta(x+a) - 2\delta(x) + \delta(x-a)] \psi(x) \, dx - \alpha (Aa)^2
\end{equation}

\begin{equation}
= -\frac{\hbar^2 A^2}{m} a - \alpha (Aa)^2
\end{equation}

\begin{equation}
= \frac{3}{2a^3} \left(\frac{\hbar^2 a}{m} - \alpha a^2 \right)
\end{equation}

The first and third delta functions in (9) contribute nothing since \(\psi(-a) = \psi(a) = 0 \), and we substitute (6) into (10) to get (11).

The free parameter here is \(a \), so taking the derivative with respect to \(a \) and setting to zero, we get

\begin{equation}
a_{\text{min}} = \frac{2\hbar^2}{\alpha m}
\end{equation}

\begin{equation}
E_0 \leq -\frac{3\alpha^2 m}{8\hbar^2}
\end{equation}

The exact bound state energy is \(E_0 = -\frac{\alpha^2 m}{2\hbar^2} \), so this upper limit is higher by \(\frac{\alpha^2 m}{8\hbar^2} \).