VARIATIONAL PRINCIPLE AND HARMONIC OSCILLATOR: A
MORE GENERAL TRIAL FUNCTION

In an earlier problem we used the variational principle to estimate the ground state of the harmonic oscillator. The trial function there was

\[\psi = A x^2 + b^2 \]
(1)

We can generalize this by introducing another parameter \(n \):

\[\psi = A (x^2 + b^2)^n \]
(2)

As usual, we first normalize \(\psi \):

\[A^2 \int_{-\infty}^{\infty} \frac{dx}{(x^2 + b^2)^{2n}} = 1 \]
(3)

As far as I know, there is no simple version of this integral, so we can use tables or Maple to work it out:

\[\int_{-\infty}^{\infty} \frac{dx}{(x^2 + b^2)^{2n}} = \frac{1}{b^{4n}} \frac{\sqrt{\pi} b \Gamma(2n - \frac{1}{2})}{\Gamma(2n)} \]
(4)

where \(\Gamma(x) \) is the gamma function. Therefore

\[A = b^{2n} \left[\frac{\Gamma(2n)}{\sqrt{\pi} b \Gamma(2n - \frac{1}{2})} \right]^{1/2} \]
(5)

We can now calculate \(\langle H \rangle \):
\[\langle H \rangle = \langle \psi | H | \psi \rangle = \langle \psi | T + V | \psi \rangle \]
\[= A^2 \int_{-\infty}^{\infty} \left[-\frac{\hbar^2}{2m} \frac{1}{(x^2 + b^2)^n} dx^2 \left(\frac{1}{(x^2 + b^2)^n} \right) + \frac{m\omega^2 x^2}{2(x^2 + b^2)^{2n}} \right] dx \]
\[= \frac{\hbar^2 (16n^3 - 16n^2 + 3n) + b^4 m^2 \omega^2 (4n + 2)}{4mb^2 (2n + 1) (4n - 3)} \]

where Maple was used to do the integrals and simplify the result.

We now take the derivative w.r.t. \(b \) and set to zero to find \(\langle H \rangle_{\text{min}} \):

\[b_{\text{min}} = \left[\frac{n (16n^2 - 16n + 3)}{2(2n + 1)} \right]^{1/4} \sqrt{\frac{\hbar}{m\omega}} \]
\[= \left[\frac{n (4n - 1) (4n - 3)}{2(2n + 1)} \right]^{1/4} \sqrt{\frac{\hbar}{m\omega}} \]

This gives an upper bound of

\[\langle H \rangle_{\text{min}} = \sqrt{\frac{n (4n - 1)}{2(2n + 1) (4n - 3)}} \hbar \omega \]

For \(n = 1 \) this reduces to the solution we had earlier:

\[\langle H \rangle_{n=1} = \frac{1}{\sqrt{2}} \hbar \omega \]

Also, as \(n \to \infty \), this tends to the exact answer:

\[\lim_{n \to \infty} \langle H \rangle = \frac{1}{2} \hbar \omega \]

We can use the corollary to estimate the first excited state’s energy. Since we know the exact ground state wave function \(\psi_0 \) of the harmonic oscillator is even (it’s a Gaussian), we can take as a trial function the odd function:

\[\psi = \frac{Bx}{(x^2 + b^2)^n} \]

Following the same procedure as above, we get for \(B \):
For the energy, we get

\[\langle H \rangle = \langle \psi | H | \psi \rangle = \langle \psi | T + V | \psi \rangle \]
\[= B^2 \int_{-\infty}^{\infty} -\frac{\hbar^2}{2m} \frac{x}{(x^2 + b^2)^n} \frac{d^2}{dx^2} \left(\frac{x}{(x^2 + b^2)^n} \right) + \frac{m \omega^2 x^4}{2(x^2 + b^2)^{2n}} \]
\[= 3 \frac{\hbar^2 (16n^3 - 32n^2 + 15n) + b^4 m^2 \omega^2 (4n + 2)}{4mb^2 (2n + 1)(4n - 5)} \]

Finding the \(b \) that minimizes \(\langle H \rangle \) gives

\[b_{\text{min}} = \left[\frac{n (16n^2 - 32n + 15)}{2 (2n + 1)} \right]^{1/4} \sqrt{\frac{\hbar}{m \omega}} \]
\[= \left[\frac{n (4n - 5) (4n - 3)}{2 (2n + 1)} \right]^{1/4} \sqrt{\frac{\hbar}{m \omega}} \]
\[\langle H \rangle_{\text{min}} = \sqrt{\frac{n (4n - 3)}{2 (2n + 1)(4n - 5)}} \hbar \omega \]

Again, for large \(n \) we tend to the exact answer:

\[\lim_{n \to \infty} \langle H \rangle_{\text{min}} = \frac{3}{2} \hbar \omega \]

To see why the limit of large \(n \) gives the exact answer, we can use Maple’s limit function to find the limit of the trial functions for large \(n \). We find (remembering to substitute for \(A \) and \(B \) by their expressions from above):

\[\lim_{n \to \infty} \frac{A}{(x^2 + b^2)^n} = \left(\frac{m \omega}{\pi \hbar} \right)^{1/4} e^{-m \omega x^2/2 \hbar} = \psi_0 \]
\[\lim_{n \to \infty} \frac{B x}{(x^2 + b^2)^n} = \left(\frac{m \omega}{\pi \hbar} \right)^{1/4} \sqrt{\frac{2m \omega}{\hbar}} x e^{-m \omega x^2/2 \hbar} = \psi_1 \]
That is, in the limit of large \(n \), both trial functions tend to the exact wave functions.