VARIATIONAL PRINCIPLE WITH A TWO-STATE
HAMILTONIAN
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Suppose we have a system with just two possible energies and corre-
sponding eigenstates, which we’ll call ¢, with energy F, and v, with en-
ergy Ey, with (a|b) =0, (a|a) = (b|b) =1 E, < E}. Now we turn on a
perturbation H’ which has the matrix elements
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The total hamiltonian is now H = Hy+ H', where Hy is the unperturbed
hamiltonian. The matrix elements of H are then
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so the exact perturbed energies are the eigenvalues of this matrix, which are
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Now we can apply perturbation theory to this problem. Since the diago-
nal matrix elements of H' are both zero, the first order perturbation is also
zero. The second order perturbation is
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This gives for the perturbations on the two energies:
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If we expand (3| in a Taylor series, these are second order terms in the
series.
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Finally, we can use the variational principle with the trial function
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We can calculate (H) as follows:
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The variable parameter here is ¢ so we take the derivative with respect to
it and set to zero to get the minimum energy:
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We can express (H) . using trig identities:
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which is exactly the lower of the two exact energies[3] The variational prin-
ciple gives the exact answer because the trial function is the exact eigen-
function, with ¢,,;, giving the components of the two unperturbed eigen-
functions that make up the perturbed eigenfunction.
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