RUBBER BAND HELIUM

Link to: physicspages home page.

To leave a comment or report an error, please use the auxiliary blog.

References: Griffiths, David J. (2005), Introduction to Quantum Mechanics, 2nd Edition; Pearson Education - Problem 7.17.

We've looked at the helium atom using the variational principle. Although the helium atom using the correct Coulomb potential cannot be solved exactly, a variant known as 'rubber band helium' can be. Here we use simple harmonic oscillator potentials. The hamiltonian is then:

$$H = -\frac{\hbar^2}{2m} \left(\nabla_1^2 + \nabla_2^2 \right) + \frac{1}{2} m\omega^2 \left(r_1^2 + r_2^2 \right) - \frac{\lambda}{4} m\omega^2 |\mathbf{r}_1 - \mathbf{r}_2|^2$$
 (1)

By introducing a change of variables, we can decouple the hamiltonian. Let

$$\mathbf{u} \equiv \frac{1}{\sqrt{2}}(\mathbf{r}_1 + \mathbf{r}_2) \tag{2}$$

$$\mathbf{v} \equiv \frac{1}{\sqrt{2}}(\mathbf{r}_1 - \mathbf{r}_2) \tag{3}$$

The gradient operators then transform as

$$\nabla_u = \frac{1}{\sqrt{2}} \left(\nabla_1 + \nabla_2 \right) \tag{4}$$

$$\nabla_v = \frac{1}{\sqrt{2}} (\nabla_1 - \nabla_2) \tag{5}$$

$$\nabla_u^2 = \frac{1}{2} \left(\nabla_1^2 + \nabla_2^2 + 2\nabla_1 \cdot \nabla_2 \right) \tag{6}$$

$$\nabla_v^2 = \frac{1}{2} \left(\nabla_1^2 + \nabla_2^2 - 2\nabla_1 \cdot \nabla_2 \right) \tag{7}$$

$$\nabla_u^2 + \nabla_v^2 = \nabla_1^2 + \nabla_2^2 \tag{8}$$

For the potential terms, we have

$$u^{2} + v^{2} = \frac{1}{2} \left[r_{1}^{2} + r_{2}^{2} + 2\mathbf{r}_{1} \cdot \mathbf{r}_{2} + r_{1}^{2} + r_{2}^{2} - 2\mathbf{r}_{1} \cdot \mathbf{r}_{2} \right]$$
(9)

$$=r_1^2 + r_2^2 (10)$$

$$|\mathbf{r}_1 - \mathbf{r}_2|^2 = r_1^2 + r_2^2 - 2\mathbf{r}_1 \cdot \mathbf{r}_2$$
 (11)

$$=2v^2\tag{12}$$

Thus the hamiltonian separates:

$$H = \left[-\frac{\hbar^2}{2m} \nabla_u^2 + \frac{1}{2} m\omega^2 u^2 \right] + \left[-\frac{\hbar^2}{2m} \nabla_v^2 + \frac{1}{2} m\omega^2 (1 - \lambda) v^2 \right]$$
(13)

which is the sum of two 3-d harmonic oscillators. The exact ground state energy of this system are then just the sum of the two separate oscillator energies:

$$E_0 = \frac{3}{2}\hbar\omega + \frac{3}{2}\hbar\omega\sqrt{1-\lambda} \tag{14}$$

To test the variational principle for this potential, we can start with the (known) ground state wave function for the 3-d harmonic oscillator as the test function.

$$\psi = \left(\frac{m\omega}{\pi\hbar}\right)^{3/2} e^{-m\omega\left(r_1^2 + r_2^2\right)/2\hbar} \tag{15}$$

This function is an eigenfunction of the first two terms in 1 with energy $3\hbar\omega$ so we have

$$\langle H \rangle = 3\hbar\omega + \langle V_{\lambda} \rangle \tag{16}$$

where

$$\langle V_{\lambda} \rangle = -\frac{\lambda}{4} m \omega^2 \left(\frac{m \omega}{\pi \hbar} \right)^3 \int e^{-m\omega \left(r_1^2 + r_2^2 \right) / \hbar} |\mathbf{r}_1 - \mathbf{r}_2|^2 d^3 \mathbf{r}_1 d^3 \mathbf{r}_2$$

$$= -\frac{\lambda}{4} m \omega^2 \left(\frac{m \omega}{\pi \hbar} \right)^3 \int e^{-m\omega \left(r_1^2 + r_2^2 \right) / \hbar} \left(r_1^2 + r_2^2 - 2r_1 r_2 \cos \theta_2 \right) d^3 \mathbf{r}_1 d^3 \mathbf{r}_2$$

$$\tag{18}$$

The term with $\cos \theta_2$ integrates to zero when we do the θ_2 integral, so we're left with two Gaussian integrals and we get

$$\langle V_{\lambda} \rangle = -\frac{3}{4} \lambda \hbar \omega \tag{19}$$

Plugging this back into 16 we get

$$\langle H \rangle = 3\hbar\omega \left(1 - \frac{\lambda}{4} \right) \tag{20}$$

This is actually the Taylor expansion with respect to λ of 14 up to first order.