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We’ve looked at the helium atom using the variational principle. Al-
though the helium atom using the correct Coulomb potential cannot be
solved exactly, a variant known as ’rubber band helium’ can be. Here we
use simple harmonic oscillator potentials. The hamiltonian is then:
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By introducing a change of variables, we can decouple the hamiltonian.
Let

1

u = E(r1+r2) (2)
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vV = %(rl—rz) (3)

The gradient operators then transform as
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For the potential terms, we have
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Thus the hamiltonian separates:
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which is the sum of two 3-d harmonic oscillators. The exact ground state
energy of this system are then just the sum of the two separate oscillator
energies:

Ey= %hw—i—%hwx/l—)\ (14)

To test the variational principle for this potential, we can start with the
(known) ground state wave function for the 3-d harmonic oscillator as the
test function.
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This function is an eigenfunction of the first two terms in[I] with energy

3fiw so we have

(H) =3hw+ (V) (16)
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The term with cosf, integrates to zero when we do the #, integral, so
we’re left with two Gaussian integrals and we get

(V) = —me (19)
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Plugging this back into [[6| we get

(H) = 3hw (1 - %) (20)

This is actually the Taylor expansion with respect to A of 14| up to first
order.



