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We’ve looked at the helium atom using the variational principle. Al-

though the helium atom using the correct Coulomb potential cannot be
solved exactly, a variant known as ’rubber band helium’ can be. Here we
use simple harmonic oscillator potentials. The hamiltonian is then:
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By introducing a change of variables, we can decouple the hamiltonian.
Let
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The gradient operators then transform as
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For the potential terms, we have
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Thus the hamiltonian separates:
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which is the sum of two 3-d harmonic oscillators. The exact ground state
energy of this system are then just the sum of the two separate oscillator
energies:
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To test the variational principle for this potential, we can start with the
(known) ground state wave function for the 3-d harmonic oscillator as the
test function.
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This function is an eigenfunction of the first two terms in 1 with energy
3h̄ω so we have

〈H〉= 3h̄ω+ 〈Vλ〉 (16)

where
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The term with cosθ2 integrates to zero when we do the θ2 integral, so
we’re left with two Gaussian integrals and we get
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Plugging this back into 16 we get
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This is actually the Taylor expansion with respect to λ of 14 up to first
order.


